
SOFTWARE AND HARDWARE APPROACHES FOR RECORD AND REPLAY

OF WIRELESS SENSOR NETWORKS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Matthew Edward Tan Creti

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2015

Purdue University

West Lafayette, Indiana

ii

This thesis is dedicated to my grandfather, Dr. Edward Eaton Mason, who is an

inspiration to achieve great things.

To my grandmother, Dordana Fairman Mason, who looked after me during my

undergraduate years.

To my father, who gave me a love of learning.

To my mother, who gave me a love of music.

iii

ACKNOWLEDGMENTS

I would like to thank the many people who have contributed to this thesis and to

the research I have performed during my graduate studies. Without their support,

this work would not have been possible.

Many thanks to my advisor, Professor Saurabh Bagchi, for giving me the oppor-

tunity and freedom to explore new ideas.

My gratitude to the members of my Program Committee, all of whom with which

I have had the privilege of collaborating on research, who are Professors Vijay Raghu-

nathan, Zhiyuan Li, and Yung-Hsiang Lu.

Thanks goes to the wonderful collaborators who I have worked with during my

graduate studies, besides those mentioned above they include Dr. Vinaitheerthan

Sundaram, Professor Patrick Eugster, Dr. Mohammad Sajjad Hossain, Matthew

Beaman, Patrick Hurley, Dr. Partha Pal, and Amy Fedyk.

Thanks goes to Dr. Henry Medeiros and Anderson Nascimento for alerting us to

unusually long lived routing loops observed in CTP, and Spensa Technologies, Inc.

for providing us access to their testbed.

This material is based upon work supported by the National Science Foundation

under Grant Nos. CNS-0953468, CNS-0716271, ECCS-0925851, and CNS-0834529.

Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views of the National Science

Foundation.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABBREVIATIONS . x

ABSTRACT . xi

1 Introduction . 1

1.1 Motivation . 1

1.2 Outline . 4

1.3 Published Work . 4

2 Hardware Based Tracing and Profiling of Wireless Sensor Networks . . . 6

2.1 TDB Hardware and Firmware . 9

2.1.1 Energy Monitoring . 10

2.1.2 JTAG Background . 13

2.1.3 Hardware Architecture . 14

2.1.4 Firmware Architecture . 16

2.2 Using the Architecture for Tracing and Profiling 18

2.2.1 Types of Triggers Available 18

2.2.2 Breakpoint Mode . 21

2.2.3 Watchpoint Mode . 22

2.2.4 PC Polling Mode . 23

2.3 Evaluation . 23

2.3.1 Microbenchmarks . 23

2.3.2 Application Setup . 27

2.3.3 Watchpoints . 28

2.3.4 PC Polling . 35

v

Page

2.4 Related Work . 37

3 Software Based System-Level Record and Replay of Wireless Sensor Networks 41

3.1 Introduction . 41

3.1.1 Challenges of Record and Replay in WSNs 41

3.1.2 Tardis Approach . 42

3.1.3 Contributions . 43

3.2 Design . 44

3.2.1 Overview . 44

3.2.2 Compile Time . 46

3.2.3 Runtime System . 48

3.2.4 Replay . 48

3.2.5 Debugging Workflow . 49

3.3 Encoding and Compression of Non-Deterministic Data 49

3.3.1 Overview . 51

3.3.2 Non-determinism of Registers 52

3.3.3 Polling loops . 53

3.3.4 Register Masking Pattern 54

3.3.5 Sleep-wake Cycling and Interrupts 54

3.3.6 Timer Registers . 55

3.3.7 State Registers . 55

3.3.8 Data Registers . 56

3.3.9 Log Format . 57

3.4 Evaluation . 58

3.4.1 Experimental Setup . 58

3.4.2 Runtime Overhead . 60

3.4.3 Static Overhead . 64

3.4.4 Comparison with gzip, S-LZW, and TinyTracer 65

3.4.5 CTP Bug Case Study . 67

vi

Page

3.5 Discussion . 72

3.6 Related Work . 73

3.6.1 Replay of Single Nodes . 73

3.6.2 Replay of Distributed Applications 74

3.6.3 WSN Debugging . 74

3.7 Conclusion . 76

4 Conclusion . 77

REFERENCES . 78

VITA . 83

vii

LIST OF TABLES

Table Page

2.1 Types of triggers available for monitoring events. 19

2.2 Time taken, in software and using the FPGA, to perform various op-
erations through JTAG in the breakpoint, watchpoint, and PC polling
modes. 24

2.3 Accuracy of the current measurements provided by TDB for fixed resistive
loads, compared to values computed based on measurements with a Fluke
multimeter. 25

3.1 Summary of key ideas and benefits of Tardis compression methods. . 50

viii

LIST OF FIGURES

Figure Page

2.1 The Telos Debug Board (TDB) with a Telos Rev B mote underneath, and
the underside of the TDB (right). 10

2.2 Simplified schematic of the energy monitoring circuit of the TDB. . . . 11

2.3 Simplified schematic of powering the mote through the TDB. The mote’s
battery should not be connected. 11

2.4 Timing example for shift IR. The byte 0xCC is shifted in on TDI while
0x00 is shifted out on TDO. 13

2.5 Hardware architecture of the TDB. 15

2.6 FPGA pipeline in PC polling mode. 16

2.7 Watchpoint trace of states when sending a message in TestNetworkLpl,
showing the application, low-power-listening, and radio layers. The num-
ber above each state’s timeline corresponds to the numbering of the states
under the timeline. For example, in the low-power listen layer, state 1
is S OFF and 2 is S ON; at the beginning the state is 1, then an extended
period of state 2, followed by a return to state 1. 29

2.8 Watchpoint trace of task executions during a radio start event. The
PowerCycleP startRadio task is called over 3000 times due to a bug
in the handling of the CC2420CsmaP SplitControlState. 31

2.9 Watchpoint trace of task executions with the startRadio bug fixed. . . 31

2.10 Execution timeline that causes task spinning. 32

2.11 Watchpoint trace of application level functions and threads of a sender
node in the Contiki tracking application. 35

2.12 Call graph of the local2Global function in FTSP. 36

2.13 Trace of the functions invoked in one execution of the local2Global func-
tion. Filled squares represent data collected from PC polling, and open
rectangles represent the inferred executions of each function. 36

3.1 The Tardis debugging process consists of instrumentation at compile-
time, in situ logging of trace data at run-time, and o↵-line replay during
debugging. 45

ix

Figure Page

3.2 Tardis instrumentation and logger with respect to the TinyOS stack. 46

3.3 Comparison between baseline and Tardis. 51

3.4 Logging format. 57

3.5 Rate of log growth and the size of di↵erent log components for Tardis.
Uncompressed log rate shown for comparison. 60

3.6 Average power consumption and CPU duty cycle of Tardis instrumented
and unmodified applications. 62

3.7 Tardis memory overhead in terms of program binary size and statically
allocated RAM size. 64

3.8 Size of log in flash for compression methods Tardis, gzip, S-LZW, and
TinyTracer. TinyTracer only records control flow. 66

3.9 The radio topology of the network used to study the bug, node 0 is the
base station. The bug is triggered when the radio link between nodes 4
and 5 fails for several seconds. 68

3.10 The ETX values on nodes 4 and 5. Due to the bug, the ETX of node 4
continues to grow even after the link is repaired at 50 seconds. 70

3.11 Beacon messages sent by node 5 and received by node 4. 70

3.12 The rate at which the log grows at nodes 4 and 5. The link between nodes
4 and 5 fails at 30 seconds and returns at 50 seconds. 72

x

ABBREVIATIONS

µC Microcontroller

ADC Analog-to-Digital Converter

CTP Collection Tree Protocol

EEM Enhanced Emulation Module

EM Earthquake Monitor

FPGA Field-Programmable Gate Array

JTAG Joint Test Action Group

MAB Memory Address Bus

MDB Memory Data Bus

MHO MultiHop Oscilloscope

OCDM On Chip Debug Module

OS Operating System

PC Program Counter

PLL Phase-Locked Loop

TDB Telos Debug Board

TI Texas Instruments

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

WSN Wireless Sensor Network

xi

ABSTRACT

Tan Creti, Matthew Edward Ph.D., Purdue University, August 2015. Software and
Hardware Approaches for Record and Replay of Wireless Sensor Networks. Major
Professor: Saurabh Bagchi.

Wireless Sensor Networks (WSNs) are used in a wide variety of applications in-

cluding environmental monitoring, electrical grids, and manufacturing plants. WSNs

are plagued by the possibility of bugs manifesting only at deployment. However,

debugging deployed WSNs is challenging for several reasons—the remote location

of deployed nodes, the non-determinism of execution, and the limited hardware re-

sources available. A primary debugging mechanism, record and replay, logs a trace

of events while a node is deployed, such that the events can be replayed later for

debugging. Existing recording methods for WSNs cannot capture the complete code

execution, thus negating the possibility of a faithful replay and causing some bugs

to go unnoticed. Existing approaches are not resource e�cient enough to capture

all sources of non-determinism. We have designed, developed, and verified two novel

approaches to solve the problem of practical record and replay for WSNs.

Our first approach, Aveksha, uses additional hardware to trace tasks and other

generic events at the function and task level. Aveksha does not need to stop the target

processor, making it non-intrusive. Using Aveksha we have discovered a previously

unknown bug in a common operating system.

Our second approach, Tardis, uses only software to deterministically record and

replay WSN nodes. Tardis is able to record all sources of non-determinism, based

on the observation that such information is compressible using a combination of tech-

niques specialized for respective sources. We demonstrate Tardis by diagnosing a

newly discovered routing protocol bug.

1

1. INTRODUCTION

1.1 Motivation

Debugging is one of the fundamental tools for identifying software defects (“bugs”).

Debugging is particularly relevant in wireless sensor networks (WSNs), as these are

susceptible to unpredictable runtime conditions. Indeed, programmers of WSNs use

tools such as simulators [1, 2], safe code enforcement [3], and formal testing [4] prior

to deployment of an application in the field, yet exhaustive testing of all conditions

in the lab is infeasible, because WSNs are deployed in austere environments whose

behavior cannot be easily duplicated in a laboratory.

Debugging is often performed in a cyclic process of repeatedly executing a program

and tracking down bugs. In WSNs, cyclic debugging can be lengthy and laborious:

• Nodes are often not easily physically accessible, meaning that the program-

mer must rely on low-power wireless links to painstakingly collect any data of

interest.

• There may not be enough information available to immediately diagnose a bug,

so the network must be wirelessly reprogrammed with code to collect additional

debugging data. This can take minutes, and waiting for the bug to resurface

may also take some time.

Once a bug fix is applied, the network is again wirelessly reprogrammed, and further

monitoring is required to determine that the bug has been successfully fixed. The

cyclic debugging fix-and-test approach thus becomes particularly laborious in this

environment.

Record and replay can potentially make the process of cyclic debugging less te-

dious. With record and replay debugging, program execution is recorded on-line

2

and then reproduced o↵-line. Record and replay cuts down on the cyclic process of

debugging by capturing a program’s execution such that it can be deterministically

reproduced and carefully examined o↵-line, perhaps in a hunt for elusive bugs [5]. In

addition, in WSNs, the recording can happen on the nodes and the replay and de-

bugging can happen on the relatively resource rich desktop-class machines in the lab.

The typical workflow for record and replay in WSNs is that during normal execution

of a deployed WSN, the nodes execute instrumented binaries that record a trace of

all sources of non-determinism to flash. The trace can then be brought back to the

lab for o↵-line replay. This can be done either through wireless data collection or by

physically accessing a node. In the lab, the recorded data is fed into an emulator,

which deterministically replays the node’s execution. The replay allows a developer

to examine the program’s execution, including its interactions with the environment,

at any arbitrary level of detail, such as through setting breakpoints or querying the

state of memory. Such replay helps the developer identify the root cause of bugs

encountered in the field.

Based on the experiences shared in “The Hitchhiker’s Guide to Successful Wireless

Sensor Network Deployments,” Barrenetxea et al., provide the following principle [6].

Do not throw away even a single byte of raw data.

Keeping all of the data collected from a WSN is valuable advice, because it is not

always possible to foresee how collected sensor data might be used in the future. Data

storage is generally inexpensive, while having to reproduce experiments can be time

consuming. The data should be available in its raw form so that it is possible for

new data transformations to be applied. This may become necessary if a defect was

discovered in the original data processing performed in situ. Inspired by the guides

advice, the work of this thesis is guided by a similar principle.

Maintain as much detailed information as possible about the execution of

WSNs in deployment.

3

The meaning of the statement is that the exact execution of nodes (e.g., their in-

structions and memory state) should be recorded such that they can be reproduced

at a later time. This leads to two questions: “Why keep such detailed information?”

and “How is recording the complete execution of a node feasible given the resource

constrains of sensor nodes?”

Why keep such detailed information? Just like sensor data is valuable for future

data mining, execution traces of nodes are valuable for discovering defects in deployed

WSNs. Many unexpected defects manifest themselves only in deployment. However,

it is di�cult to obtain detailed information on the execution of nodes that have been

deployed, due to their remoteness and their resource constrains. Ideally we would

like to be able to replay every memory state and instruction execution, because this

makes reproducing all software bugs possible. In Chapter 3 we demonstrate a software

approach called Tardis which can do just that.

How is recording the complete execution of a node feasible given the resource con-

strains of sensor nodes? In an e↵ort to reduce the cost, size and energy consumption

of sensor nodes, the main processor and non-volatile storage are heavily constrained

in WSNs. The main processor is typically a microcontroller (µC) which may be lim-

ited to a few MHz and RAM in the range of tens of KBs. Non-volatile storage is

usually a flash chip which may contain anywhere from a MB to a few GB of storage.

Radios typically only have kilobytes per second of bandwidth. Given this it does

not seem feasible to record and replay executions down to the instruction level, and

to do so in a manner that does not interfere with the real-time constrains of sensor

nodes. In Chapter 2, we present a hardware approach that is able to generate traces

at the granularity of every function call using Commercial O↵-The-Shelve (COTS)

components already available in most sensor nodes. In this work hardware based par-

allelization is the key to achieving high granularity tracing, without interfering with

the execution of the node being traced. In Chapter 3, we present a software-only

based solution that uses carefully chosen compression techniques and records only

4

the bare minimum non-deterministic data, such that a deterministic replay of the

execution can be produced.

1.2 Outline

In Chapter 1 we introduce the motivation for this thesis and list the papers that

have resulted from this research. In Chapter 2 we present Aveksha, a hardware based

approach to trace tasks and other generic events at the function and task level. The

hardware and firmware design for Aveksha is presented in section Section 2.1. Avek-

sha has di↵erent operating modes that determine what type and granularity of trace

can be collected as explained in Section 2.2. The evaluation of Aveksha’s perfor-

mance and functionality along with a newly discovered bug in a common open source

operating system is presented in Section 2.3. Section 2.4 describes work related to

Aveksha. In Chapter 3 we present Tardis, a software based approach to determin-

istically record and replay WSN nodes. Section 3.1 introduces the challenges faced

by Tardis and the approach and contributions of Tardis. The design of Tardis is

given in Section 3.2 followed by an evaluation of the performance and functionality

of Tardis in Section 3.4. A discussion of limitations and future work is provided in

Section 3.5. Work related to Tardis is described in Section 3.6. The conclusions are

provided in Chapter 4.

1.3 Published Work

Parts of this thesis have been presented and published in the proceedings of peer

reviewed conferences.

• Matthew Tancreti, Mohammad Hossain, Saurabh Bagchi, and Vijay Raghu-

nathan, “Aveksha: A Hardware-Software Approach for Non-intrusive Tracing

and Profiling of Wireless Embedded Systems,” in Proceedings of the 9th ACM

5

Conference on Embedded Networked Sensor Systems, SenSys ’11, 14 pages, Seat-

tle, Washington, November 1-4, 2011. (Winner of the best paper award.)

• Matthew Tancreti, Vinaitheerthan Sundaram, Saurabh Bagchi, and Patrick Eu-

gster, “Tardis: Software-Only System-Level Record and Replay in Wireless

Sensor Networks,” in Proceedings of the 14th ACM/IEEE Conference on Infor-

mation Processing in Sensor Networks, IPSN ’15, 12 pages, Seattle, Washington,

April 14-16, 2015.

6

2. HARDWARE BASED TRACING AND PROFILING OF

WIRELESS SENSOR NETWORKS

In the first approach to detailed record and replay, we present Aveksha [7]. Aveksha

is a system based on an insight that most processors, including low-cost embedded

processors, o↵er visibility into their internal workings through an On-Chip Debug

Module (OCDM), whose signals are exposed through a standard JTAG interface.

This interface has been used by embedded system engineers primarily for interactive

debugging, such as single stepping, showing values of registers, etc. We show how this

visibility, together with the fact that most OCDMs provide a general-purpose method

of setting triggers, can be leveraged to perform automated tracing in a deployed

setting.

In this work we would like to have visibility at a fine granularity - both spatially

and temporally. Spatially fine visibility implies that it should be possible to trace

individual events of interest as opposed to only bursts of events (clearly, tracing every

event is likely to be prohibitive) and it should be possible to trace performance and

energy at fine code regions, such as a function or a task (using TinyOS terminol-

ogy). This is desirable because the fine region of code can then be debugged if it is

determined through performance profiling that this region is causing a performance

bottleneck, through energy profiling that it is consuming unexpectedly large amounts

of energy, or through record and replay that it is the source of a bug. Temporally

fine visibility implies that it should be possible to do the tracing with a high sam-

pling frequency. Clearly, the two dimensions are not independent. In order to trace

small regions of code in a loop, it is necessary to be able to trace at a fine temporal

granularity.

While the problem motivation laid out above has been clear to researchers for quite

some time [8], it has proved very di�cult to provide a solution for low-cost embedded

7

wireless nodes that can operate at a large deployed scale. The first line of attack

has been to provide pure software solutions [9–11]. Such solutions have perturbed

the application too much to be useful for many of the use cases indicated above.

For one, they change the timing behavior enough that some bugs get suppressed.

Else, they cause such a large slowdown in the application execution that it is not

possible to employ them in a deployed setting. To get around this problem, a recent

software solution [11] has focused on a specific kind of tracing (control flow tracing)

and intelligent static analysis and runtime trace collection, compression and storage.

Thus, it addresses one of the above usage scenarios. The second line of research

has developed hardware solutions for subsets of the usage scenarios laid out above.

For example, [12] has developed a dedicated integrated circuit, implemented using an

FPGA, that is tightly integrated with the host processor and its peripherals and can

measure energy drawn accurately at millisecond resolution. Quanto [13] is a solution

that de-emphasizes sophisticated hardware design. Instead, it measures energy at

the node level, uses indication from device drivers about changes in power state, and

performs causality tracking to pin down energy usage due to individual activities.

Thus, Quanto is a hardware-software solution, and like all prior solutions that have

a software part, is OS-specific (in this case, TinyOS).

A high-end hardware solution for tracing the execution on an embedded proces-

sor is provided by solutions such as Green Hills Software’s SuperTrace probe and

TimeMachine tools [14]. These solutions can collect fine-grained trace data from

nearly all 32-bit and 64-bit processors, even those without integrated trace hardware.

Unfortunately, such solutions are very expensive in dollar terms (e.g., the SuperTrace

probe and TimeMachine tools together cost almost $15,000) and are not available

for the low-end embedded processors that are commonly used in embedded wireless

nodes.

We develop a debug board formed of standardized components – a microcontroller

unit (µC), which in our case happens to be the same as the application processor,

MSP430F1611 from Texas Instruments, and an Actel FPGA, both of which interact

8

with the OCDM on the application processor over the JTAG interface. We refer

to our debug board as the Telos Debug Board (TDB) because it is intended to be

used with the Telos wireless sensor node (however, our solution is not restricted

to the Telos and can easily be adapted to other embedded platforms based on the

MSP430 microcontroller, and with some e↵ort to other embedded platforms). The

MSP430 OCDM (also referred to by the microcontroller datasheets as the Enhanced

Emulation Module or EEM) allows Aveksha unprecedented visibility into the state

of the application processor. Further, the OCDM has a small circular bu↵er where

events of interest can be stored and subsequently drained by the FPGA on the TDB.

The triggering mechanism of the OCDM is very flexible and is therefore attractive for

Aveksha. For example, the OCDM can be triggered to indicate when the application

processor has accessed a certain memory region or a certain peripheral device, such

as a sensor. We find that the triggering mechanism can be combined with thoughtful

design to trace all the events of interest for our three usage scenarios – performance

profiling, energy profiling, and record-and-replay.

One challenge that we face, and resolve partially, is the need to do real-time trac-

ing, i.e., without interrupting the application processor. Aveksha is able to achieve

this when the rate of events that it has to trace does not exceed some bound, which

depends on the mode of tracing it uses. Aveksha operates in one of three modes:

breakpoint, watchpoint, and program counter (PC) polling. Breakpoint is a baseline

and we use it for demonstrating some functionality of the TDB. It is intrusive and,

therefore, does not meet our solution requirements. The watchpoint mode has Avek-

sha set triggers, where each trigger unambiguously maps to an event of interest (such

as when a sensor is read). When a trigger fires, the application processor is not

stopped, but the state is dumped to a bu↵er on the OCDM, which is then emptied

out by Aveksha. This is a rate-limited operation and if events of interest happen

with a high enough frequency, the bu↵er overflows and Aveksha misses some events

of interest. In the PC polling mode, the TDB tracks the program counter values of

the application processor without interrupting it. Then, it processes the PC values

9

to determine events of interest, such as when control flow has entered a particular

function. These three modes reveal di↵erent tradeo↵s in terms of intrusiveness, the

flexibility in defining which events to collect, and the rate at which collection can be

done.

The Aveksha approach is:

1. The first technique for non-intrusive tracing of a wide variety of events, including

arbitrary user-defined events, in embedded wireless nodes. We motivate the

events of interest from three well-accepted usage scenarios.

2. A tracing technique that is agnostic to the operating system, compiler infras-

tructure, or language in which the application is implemented.

3. Implemented in hardware that is built using o↵-the-shelf components and re-

quires little e↵ort in integrating with the application board, which is modified

only very slightly for enabling the tracing.

4. Suitable for deployment at a large scale because it is low cost, can operate on

battery power, and extracts program information directly from the application

processor.

Our solution also has some limitations. In brief, the TDB is a relative energy

hog itself, drawing about the same power as the application processor board. Its

ability to keep pace with events is exceeded if a burst of 8 events happens within

a window smaller than 976 clock cycles (in the watchpoint mode) or events happen

more frequently than 7 clock cycles (in the PC polling mode).

2.1 TDB Hardware and Firmware

In this section, we present the design of the Telos Debug Board (TDB), which

provides execution tracing and energy monitoring of the Telos Rev B mote. An µC

and an FPGA provide the programmability of the TDB.

10

!"#$% &'(%)*% +,$#%
,-./&012%)31245672%

,2809%:012%

(;91426:%(<.%
=10%"'%0;>0368?%

-0@391426:%(<.%
=10%:012%0;>0368?%

,-.%

Fig. 2.1.: The Telos Debug Board (TDB) with a Telos Rev B mote underneath, and

the underside of the TDB (right).

Terminology: We lay out some terminology that we will use through the rest of

the paper. We wish to monitor the execution of the application processor that is

part of an application processor board. The application processor board, which we

sometimes also refer to as the mote, has various peripherals such as sensors and the

JTAG interface in addition to the application processor. We refer to the hardware

board that is a part of our solution as the Telos Debug Board, while the entire

hardware-firmware that forms our solution is called Aveksha.

Figure 2.1 shows a photograph of the TDB with a Telos mote attached underneath.

The MCU, FPGA, and multiple USB ports on the TDB are highlighted. The figure

also shows the JTAG and IO connections between the TDB and the mote. The TDB

is designed so that it can be deployed in the field, connected to a mote. In this mode

of operation, a battery powers the TDB, which in turn provides power to the mote.

As a secondary mode of operation, the TDB can also stream logged events directly

to a USB host such as a laptop. This is useful for in-lab debugging.

2.1.1 Energy Monitoring

Energy is a key concern for sensor networks, because motes must operate unat-

tended on battery power for long periods of time. When optimizing an application to

reduce energy consumption, it can be useful to observe how much energy is consumed

11

-
+

-
+

-
+

-
+

Rsense
3.74

3.3V 3.3V
5V

5V

3.3V

3.3V

ADCx10

ADCx105

100

0.1u

100

0.1uMote DVCC

10

105

Sense Amplify Filter Protect

Fig. 2.2.: Simplified schematic of the energy monitoring circuit of the TDB.

Rsense
3.74

3.3V

Vin Vout
3.3V LDO

5V from USB

DVCC

Mote TDB
non-USB components

removed
battery

+
-

Rload

USB components

Fig. 2.3.: Simplified schematic of powering the mote through the TDB. The mote’s

battery should not be connected.

in di↵erent states. The TDB can measure and log the power consumed by the mote,

which can then be correlated to di↵erent operational states of the mote.

The standard method for measuring energy consumption is by monitoring the

voltage over a sense resistor. The sense resistor (R
sense

) is placed in series with the

load being measured. The voltage (V) across R
sense

is sampled and the load’s current

draw is calculated by I = V/R

sense

. The supply voltage (V
supply

) can then be used to

find the power being drawn by the load with P = I ⇤ V
supply

. The power samples can

then be integrated over time to determine energy consumption.

The challenges presented in monitoring energy in sensor networks is the wide

dynamic range of power draw of a mote and the rapid changes in power draw. For

example, a mote may draw only tens of µA in sleep mode and as much as 30mA when

fully active. It may not be su�cient to ignore the small power draw when the mote

is in low power mode, because typical sensor network applications spend long periods

of time in the low power state while only waking for short periods of time. Further,

12

the change in the current draw when the mote transitions from one state to another

is rapid.

To meet these challenges, we use two instrumentation amplifiers to amplify the

voltage across R
sense

by a gain of 10 and 105, as shown in Figure 2.2. Because R
sense

is placed on the high side, the amplifiers need to be supplied with a voltage larger

than 3.3V, in this case 5V. The output of these amplifiers is fed into an RC low-pass

filter to avoid interference from high frequency components. The cut o↵ frequency is

about 16kHz. This value is justified in the design of the SPOT energy meter, based

on an observed significant drop in energy content above this frequency [15]. Another

pair of amplifiers with unity gain is used to protect the ADCs which cannot tolerate

more than 3.3V. Two ADC channels of the MCU on the TDB sample the x10 and

x105 lines at 20KHz. The ADCs are 12-bit and sample against a reference voltage of

2.5V. This gives ADCx10 a resolution of 61µV across R

sense

which is equivalent to

16.3µA of current draw, and a maximum reading of 250mV or 66.8mA, which is more

than the mote’s maximum current draw of 30mA. The ADCx105 gives a resolution of

5.81µV across R
sense

which is equivalent to 1.55µA of current draw, and a maximum

reading of 23.8mV or 6.37mA.

As shown in Figure 2.3, R
sense

is placed between the TDB’s 3.3V supply and the

mote’s DVCC line, while the ground lines of the mote and the TDB are shared. This

configuration is known as high side sensing. One advantage of high side sensing is that

the ground plane of the mote and the TDB are shared. Another advantage is that

a Zener diode built into the Telos achieves isolation between the USB components

and the non-USB components, and thus allows us to capture the current draw of

only the non-USB components, even when the mote is connected to a USB host. The

diode has a forward bias of about 360mV, meaning that as long as the voltage drop

across the sense resistor remains below 360mV, all current drawn through R

load

will

be from the TDB. R
sense

is chosen su�ciently low such that this will happen even

at maximum power draw by the mote. The maximum current of the mote is 30mA

which would result in a voltage drop across the sense resistor of 112mV.

13

0 1 2 3 4 5 6 7BIT

TDO

TDI

TMS

TCK

Fig. 2.4.: Timing example for shift IR. The byte 0xCC is shifted in on TDI while

0x00 is shifted out on TDO.

To account for amplifier o↵set we use a switch between R

sense

and DVCC that

allows 3.3V to be temporarily placed at both ends of R

sense

in a manner similar

to [15]. The MCU has an ADC bu↵er of 16 samples, that are filled by DMA to

reduce overhead. The x10 and x105 amplified signals are sampled alternately at a

rate of 40ksps, to achieve an e↵ective sampling rate of 20ksps. When the ADC bu↵er

is full, an interrupt service routine sums up the samples in the bu↵er. It is desirable to

use the ADCx105 reading due to its greater current resolution, unless there has been

an overflow in its reading. The ADCx10 value is used to determine if the ADCx105

has had an overflow.

Using the MCU’s ADC reduces system cost and complexity. However, it does have

the disadvantage of introducing a delay between an event occurring on the application

processor, and the the MCU recording the energy. The average delay is 234µs. 30µs

is taken by the FPGA to read the event from JTAG, while the rest is mostly due to

the time required for the MCU to sum the samples of the 16 entry ADC bu↵er. An

alternative design would have the FPGA poll a separate ADC. This would reduce the

delay to below the 50µs (20KHz) sample period of the ADC.

2.1.2 JTAG Background

The application processor contains an on-chip debug module. This module can be

used to emulate the processor (directly control the processor operations) and it can

14

execute breakpoints and watchpoints when certain conditions of the data and address

buses are met. A breakpoint halts execution of the processor, while a watchpoint

records the contents of the data and address bus into an 8 entry circular bu↵er. The

OCDM is implemented as a state machine that is controlled via the standard JTAG

protocol.

JTAG uses four lines: data output to host (TDO), data input to target (TDI),

mode select (TMS), and clock (TCK). JTAG shifts frames of data into and out of the

OCDM and that changes the state of the OCDM. There are two basic shift modes: an

8-bit instruction register (IR) shift and an n-bit data register (DR) shift. The TMS

line selects between IR or DR at the start of a shift based on the number of TCK rising

edges for which it remains high. For example, in Figure 2.4, TMS remains high for

two rising edges which selects the IR mode, while one rising edge would select the DR

mode. The number of bits shifted in an n-bit DR shift is determined by TMS being

high a second time during the shift of the last bit. Bits are shifted from the mote to

the TDB on the TDO line and from the TDB to the mote on the TDI line. Although

the JTAG protocol is standard, the sequence of instructions that must be shifted into

the OCDM on the MSP430 is proprietary. We have reverse engineered these control

sequences and used them in Aveksha to determine what command sequences must be

sent to the OCDM for the application to enter a breakpoint, to set a watchpoint, or

to enable PC polling.

2.1.3 Hardware Architecture

As shown in Figure 2.5, the TDB consists of a USB hub, a USB to UART adapter,

an MCU, and an FPGA. The USB components are primarily for use in a lab environ-

ment and provide reprogramming, control, and streaming of log data. The USB hub

has 1 upstream port and 3 downstream ports. The upstream port is used to access

the debug board from a PC. One of the downstream ports is permanently connected

to a USB to UART adapter that provides reprogramming and data transfer to and

15

USB Hub USB/UART
Adapter MCU

UARTUSB

Upstream
USB

Mote
USB

Mote
Expansion
 Interface

FPGA

16

Mote
JTAG

control

data
4

Fig. 2.5.: Hardware architecture of the TDB.

from the MCU. The second downstream port is available for connection to the USB

port on the mote. This is useful in a lab or testbed deployment where access to the

mote’s USB port is desired. The final downstream port is available for future use,

and we envision it being used in testbed deployments to daisy chain several TDBs

together.

The Actel IGLOO nano FPGA interfaces with the mote’s JTAG and expansion

interfaces. The expansion interface of the mote provides access to the some of the its

UART, I2C, ADC, and GPIO peripherals. It was necessary to use an FPGA to control

the mote’s JTAG to be able to poll at a su�cient frequency to keep up with the events

we want to observe. For some operations (such as PC polling) we have found the need

to drive the clock line of the JTAG up to 24MHz. A software implementation would

require a processor that operates at several times that speed. Additionally, there

is the problem of processing the collected JTAG data to determine what should be

logged. The FPGA allows pipelining of JTAG control and data processing, so that

the polling loop never waits for data processing.

The MCU performs tasks that are less time critical and better suited to software.

For example, initialization of the mote for debugging, reading the contents of the

mote’s program memory, and disassembly of the mote’s program code are performed

by the MCU. Using an MCU also makes adding functionality to the debug board

easier because the MCU can be reprogrammed over USB. To simplify programming,

16

PC poll Function
lookup Filter Output

Buffer
PC

addr
func
ptr

func
ptr

16 16 16

Mote
JTAG

MCU

Fig. 2.6.: FPGA pipeline in PC polling mode.

the MCU used on the TDB is an MSP430 processor that is identical to the one used

on the Telos mote. It operates at 8MHz.

In the current prototype, the TDB logs are streamed over USB. It would also

be possible to add some Flash memory to act as a circular bu↵er as was done in

FlashBox [16]. Our maximum reliable streaming throughput over USB is 1Mbps.

This is limited by the USB 1.0 hub and adapter, which have a theoretical throughput

of 1.5Mbps. Moving to USB 2.0 would boost the USB throughput to 480Mbps,

which would make the MCU the bottleneck in streaming logs. However, we have

found 1Mbps to be su�cient in all of our experiments as long as bu↵ers are added in

the MCU and FPGA to absorb short bursts of data to be logged.

2.1.4 Firmware Architecture

The firmware of the TDB consists of C code for the MCU and Verilog code for

the FPGA.

Firmware on the MCU: The MCU is responsible for initialization tasks. When

the TDB is first connected to the mote, the MCU sets the FPGA into a mode where

the MCU can directly control the JTAG lines connected to the mote. Through JTAG

commands, the mote is put into a halt state and the program memory of the mote

is read. A simple disassembly of the program is performed, where the start of every

function block is discovered by examining the destination of every call instruction in

the code. This approach will not reveal functions that are called only by function

pointer, however such functions are not common, and if they must be debugged then

17

the symbol table generated from a compiler can be loaded. The resulting table of

function blocks is then programmed into the FPGA’s RAM for use by the function

lookup module – a module that takes an address as input, and outputs the function

block containing that address. Once the table is loaded, any watchpoint trigger can be

set on the mote. What triggers will be set will depend on the goal of the tracing. We

explain in Section 2.2 the complete list of triggers that can be supported. Finally, the

MCU sets the FPGA to either the PC polling or the watchpoint mode and resumes

execution on the mote. Thus, the MCU on the TDB functions as an orchestrator,

but leaves the core functionality for the FPGA.

The main advantage of reading and disassembling the mote’s program memory

when the TDB is connected to the mote is that the TDB need not be aware a priori

of what application the mote is running. This process is independent of the compiler

or operating system used by the mote. In addition to finding the entry point of every

function, the disassembly of the code is also used to record the start and return of

every interrupt service routine, the address of every function call and return, and

the addresses of special nop instructions (e.g. MOV R4, R4), that are used as trigger

markers in the code.

Firmware on the FPGA: The FPGA is responsible for controlling the mote’s

OCDM through JTAG. The FPGA polls the OCDM to to detect the occurrence of

any events of interest. Following each iteration of the polling loop, processing may

need to be performed to decide whether or not the polled data should be logged. For

example, with PC polling, a log entry should be generated when the polled PC value

falls into the address range of a new function. To prevent a slowdown in polling,

processing is pipelined. Figure 2.6 shows the PC polling pipeline. At the end of

each PC poll, the PC address is passed to the function lookup module. The function

lookup module contains a table in RAM of the start address of every function block.

A binary search is performed on the table to find the start address of the function

block that corresponds to the polled PC address. The function table capacity is 1024

function pointers, so the lookup completes in at most log2(1024) = 10 reads from

18

RAM. Lookup is not a bottleneck, because the FPGA is internally clocked at 48

MHz, which allows 76 clock cycles per PC poll. After the correct function pointer is

discovered, it is passed to a filtering module. This module decides to log the function

pointer only if it is di↵erent from the last logged function pointer. Finally, function

pointers that are to be logged are passed to a FIFO output bu↵er maintained in the

FPGA. The MCU on the TDB reads this bu↵er and logs the data either in local

Flash memory, or if required, streams the log entries to a host machine over USB.

The bu↵er is necessary because the MCU performs other functions, such as energy

monitoring, and may not be able to read a value to be logged in the time it takes to

perform a single PC poll. The bu↵er also absorbs peaks in the rate of new functions

being invoked. We have observed a bu↵er size of 256 to be su�cient to absorb all

peaks in the programs that we have monitored.

2.2 Using the Architecture for Tracing and Profiling

There are three modes that Aveksha can operate in while monitoring applica-

tion execution, namely Breakpoint mode, Watchpoint mode, and PC Polling mode.

Depending on the mode of operation, Aveksha interacts with the OCDM on the ap-

plication processor in di↵erent ways. Therefore, these modes have di↵erent tradeo↵s

in terms of the level of intrusiveness to the application (breakpoints are the most

intrusive), the flexibility o↵ered in terms of the kinds of events that can be observed

(watchpoints are the most flexible), and the speed of event logging (PC polling is

the fastest). Before we describe the three modes of operation, we discuss the kinds

of triggers that Aveksha can set for observing events of interest on the application

processor.

2.2.1 Types of Triggers Available

The OCDM on the application processor allows us to set 8 concurrent triggers

for detecting events of interest. Although this number may, upon first glance, seem

19

Table 2.1.: Types of triggers available for monitoring events.

Event Condition # Triggers

Function call MDB-F==0x12B0 1

Function return MDB-F==0x4130 1

Interrupt MAB-R�0xFFE0 1

Interrupt return MDB-F==0x1300 1

Peripheral read 0x0010MAB-R0x01FF 2

User defined MDB-F==0x4404 1

insu�cient to create a complete profile of an application, that is not the case because

the MSP430 o↵ers far more advanced triggers than just the program counter (PC)

reaching a particular value. For example, a trigger can compare the Memory Data

Bus (MDB) or the Memory Address Bus (MAB) to a set value or range of values.

Additionally, the trigger can be restricted to be active only during an instruction

fetch (F), a memory read instruction (R), or a memory write instruction (W). This

gives us great flexibility in using these 8 concurrent triggers to capture all our events

of interest.

All of the triggers that we use in this paper are listed in Table 2.1. The notation

used for specifying the condition that the value on the Memory Data Bus equals

0x12B0 on an instruction fetch is given by: MDB-F==0x12B0. This particular trigger

will fire for every function call because 0x12B0 is the machine code for a function call

instruction. Similarly, the machine code for the return instruction from a function call

is ret=0x4130. Therefore, the trigger MDB-F==0x4130 will trigger on all function call

return events. A call to an interrupt can be detected with the trigger MAB-R�0xFFE0.

The interrupt vector table is located between address 0xFFE0 and the end of the

address space at 0xFFFF. Every time an interrupt is to be serviced, the processor reads

the interrupt vector table to determine the address of the interrupt service routine

20

that corresponds to the interrupt being serviced. Interrupts have their own return

instruction (reti=0x1300) that can be monitored with the trigger MDB-F==0x1300.

The compound trigger 0x0010MAB-R0x01FF will fire for every read to memory

between addresses 0x0010 and 0x01FF. A compound trigger, such as the above, that

contains two conditions is made by joining two triggers together, and uses 2 of the 8

available trigger entries. In the MSP430, the peripherals are all memory mapped to

addresses between 0x0010 and 0x01FF. The peripherals include any sensors that may

be attached to the application processor. For purposes of deterministic record and

replay, it is important to track what sensor values are read. This can be done by using

the trigger 0x0010MAB-R0x01FF, which captures a read from the memory-mapped

peripheral portion of memory. When a trigger is fired, the OCDM stores the values of

the MAB and the MDB to the 8-entry circular bu↵er. The stored MDB will contain

the value that was read from the peripheral.

While functions and interrupts are interesting points for monitoring, we would

like even more flexibility to monitor any arbitrary event in the executing application.

For example, if we want to monitor the execution of every task in TinyOS, we cannot

do this with a function call trigger. This is because the gcc compiler inlines many of

the tasks in the scheduler’s runTask() function. One solution is to set the noinline

directive on all task functions. We have verified that this works, however, this is

unsatisfactory because it sacrifices the e�ciency gains obtained due to function call

inlining. A less costly solution is to trigger on a nop instruction. However, the MSP430

does not have an explicit nop instruction. Instead, compilers emulate this instruction

by using a 1 cycle instruction that has no direct e↵ect and no side e↵ect on status

or mode bits – specifically, gcc uses the instruction MOV R3, R3 to emulate a nop.

There are three possible 1 cycle instructions that meet the requirements for no e↵ect

or side e↵ect: (MOV Rn, Rn), (BIC #0, Rn), and (BIS #0, Rn). With 16 registers

available on the MSP430, this gives us 48 possible choices for an emulated nop. We

can use di↵erent application-specific meanings for each emulated nop instruction to

monitor 48 arbitrary events of interest. For our purposes we choose just one, (MOV

21

R4, R4), which translates to the machine code 0x4404, and add an instruction fetch

trigger MDB-F==0x4404. A programmer can now place the assembly code (MOV R4,

R4) at arbitrary places in the code to monitor user-defined events of interest, such as

the beginning of a task.

2.2.2 Breakpoint Mode

Any of the 8 concurrent triggers available can be set as a breakpoint. When a

breakpoint is reached, the application processor halts execution. Aveksha performs

a continuous poll of the CPU state of the application processor. When it sees that

the CPU is halted, it retrieves the state of the application processor (e.g., the value

of the PC) and sends the JTAG command to resume execution.

Table 2.2 shows the speed at which a single poll (or test) of the CPU state can be

performed, the time it takes to read the PC register, and the time it takes to resume

CPU execution. All of these operations involve shifting values into the instruction

register (IR) and data register (DR) of the OCDM. For example, a test of the CPU

state requires shifting one IR and one DR, reading the PC register requires shifting

2 IRs and 4 DRs, and resuming the CPU involves shifting 3 IRs and 1 DR. The op-

erations needed for achieving the tasks are not documented and we determined them

through reverse engineering TI’s IAR debug interface [17]. An IR can be shifted in 15

cycles of the JTAG clock (TCK) and a DR can be shifted in 23 JTAG clock cycles.

Table 2.2 shows the times for performing the required shift operations in software

with the MCU on the TDB running at 8MHz, and the FPGA implementation. The

FPGA is able to operate the JTAG clock (TCK) at 10MHz, which is the fastest we

have been able to operate the JTAG reliably for the breakpoint and the watchpoint

modes and is the maximum rated speed according to the JTAG specification.

Breakpoints have the advantage that we never miss a trigger firing, because every

time a trigger is reached the CPU is halted and control is passed to the TDB. The

disadvantage of the breakpoint mode is that we lose the property of non-intrusiveness.

22

In TinyOS, the MSP430 on the Telos is set by default to operate at 4MHz meaning

1µs = 4cycles. Using the FPGA implementation, the time to poll and resume the

application processor is equivalent to 91.2 cycles of the application processor. The

application processor has to be halted for at least this time while processing an event.

2.2.3 Watchpoint Mode

Any of the 8 triggers can be set as watchpoints rather than breakpoints. The

JTAG interface has an 8-entry circular bu↵er where memory address bus (MAB) and

memory data bus (MDB) are stored when a watchpoint is hit. As indicated earlier

in Section 2.2.1, the trigger can be on an instruction fetch, read, or write. Thus, by

recording the address bus content on an instruction fetch, it is possible to know the

PC value. The most recent entry written to the 8-entry bu↵er is indicated with a

set flag. Aveksha polls the flag of the most recently written entry until it is cleared,

indicating that a new entry has been written to the bu↵er. It continues to read entries

until it again reaches an entry that has the last entry flag set.

Watchpoints have the benefit that unlike breakpoints, they are not intrusive to

the application. The application does not have to interrupt its execution when a

watchpoint trigger is met. However, this also means that there is a threshold for the

rate of triggers that Aveksha can keep up with. Beyond this rate, the circular bu↵er

will wrap around and some events of interest will be missed. Based on our empirical

measurements (given in Table 2.2), the entire processing for one invocation of of a

watchpoint trigger takes 30.5µs, which corresponds to 122 cycles for the application

processor at 4 MHz. Thus, as long as we do not have a sustained burst of 8 events of

interest within 8⇥ 122 = 976 cycles, the TDB in the watchpoint mode will not miss

any event.

23

2.2.4 PC Polling Mode

The final approach to trace generation, is to forego using triggers entirely, and

instead poll the program counter of the application processor. With this approach,

each polled PC value is used to determine what section of the code the application

processor is executing in. For example, the function lookup described in section 2.1.4

finds the function corresponding to a PC value. The advantage of PC polling is

that it is about 19 times faster than the watchpoint mode and hence can keep pace

with a higher frequency of events, such as every function transition. From Table 2.2,

we see that it takes just 1.6µs to complete a single PC poll, which corresponds to

6.4 clock cycles of the application processor. This means that it is possible to miss

function transitions shorter than 7 clock cycles. However, with most instructions

taking more than one cycle, such a short time between function transitions is unusual.

A disadvantage of PC polling is that it does not allow for advanced triggers – it only

allows reading the PC value. For example, we could not use PC polling alone to

watch for a memory read or write to a specific memory location.

2.3 Evaluation

2.3.1 Microbenchmarks

The objective of our microbenchmarking experiments is to evaluate the perfor-

mance of the building blocks of Aveksha. In particular, we evaluate (a) how many

clock cycles it takes for Aveksha to perform event monitoring for each of the three

modes – breakpoint, watchpoint, and PC polling, (b) the accuracy of the energy mon-

itoring by comparing it with measurements obtained using a Fluke multimeter and a

dedicated power monitor from Monsoon Inc., and (c) the energy consumption of the

TDB itself.

Time Taken in Each Monitoring Mode: Ideally, we would like to poll the PC

or the watchpoint bu↵er at a rate su�cient to observe every instruction executed on

24

Table 2.2.: Time taken, in software and using the FPGA, to perform various opera-

tions through JTAG in the breakpoint, watchpoint, and PC polling modes.

Mode Operation Software (µs) FPGA (µs)

Breakpoint Test 43 3.8

Read Addr. 140 12.2

Resume 77 6.8

Total 260 22.8

Watchpoint Test 200 18.3

Read Addr. 140 12.2

Total 340 30.5

PC Polling Read PC 48 1.6

Total 48 1.6

the application processor. Unfortunately, the MSP430’s OCDM was designed to be

operated with a maximum frequency of 10MHz for the JTAG clock. One exception

we have discovered empirically is that PC polling can be reliably clocked at up to

24MHz. Table 2.2 presents the e↵ect this has on the time taken to complete basic

polling operations. The software column shows how long operations take if only

the MCU on the TDB is being used while the FPGA column represents the time

operations take in the current FPGA implementation. The FPGA implementation is

limited only by how fast the JTAG clock of the application processor can be reliably

driven. The table presents results in µs. TinyOS operates the main clock at 4MHz

by default, so 1µs=4 clock cycles.

The breakpoint mode of monitoring comprises a test operation to determine if

the application processor has halted (which is done in a loop), a read address phase

25

Table 2.3.: Accuracy of the current measurements provided by TDB for fixed resistive

loads, compared to values computed based on measurements with a Fluke multimeter.

Resistance Current Relative Error

(Ohms) Computed (µA) TDB (µA) (Unitless)

179.71 18362.92 18483.56 0.007

218.55 15099.52 15193.74 0.006

560.8 5884.45 5807.06 0.013

991.4 3328.63 3314.46 0.004

4689.2 703.74 674.77 0.041

32610 101.20 92.34 0.088

55220 59.76 52.97 0.114

179360 18.40 16.09 0.125

266750 12.37 16.28 0.316

to collect the instruction address at which the halt occurred, and a resume phase

to restart execution. Likewise, the watchpoint mode has a test phase and a read

address phase. The test phase here is more complex because it has to test if a new

entry has been created in the JTAG circular bu↵er. In total, a watchpoint poll takes

30.5µs, or 122 cycles of the application processor. For all of the applications that

we have experimented with (which are a superset of the ones for which we provide

results here), the rate of events, tasks, and application-level functions is lower than

the above rate. However, if we include system-level entities (functions, events, and

tasks), then this rate is occasionally exceeded. Finally, PC polling only requires a read

PC operation that can be performed in under 7 cycles of the application processor.

Accuracy of Power and Energy Monitoring: The objective of this experiment

is to see if Aveksha can faithfully monitor the power draw in the static case (using a

26

fixed resistive load) and when there are spikes in power consumption, which happen

commonly in embedded systems, e.g., when the radio switches on. Table 2.3 shows the

current consumption reported by the TDB for various resistive loads. For comparison,

we measured the value of each resistor using a high-accuracy Fluke multimeter and

computed the theoretical current consumption through it. As seen in the table, TDB’s

current measurement is within 10% of the computed value for current draws of 100

µA or above, while the error goes up for smaller current values. The accuracy of the

current measurement can be improved further using techniques (which we have not

implemented yet) such as better decoupling of analog and digital components, and

use of a ground plane.

We also measured the power consumption reported by the TDB while attached

to a Telos mote running the TestNetworkLpl TinyOS application. It is important

to note that the amplitude of the power consumption trace in this case will have a

significant dynamic range due to various components on the mote changing power

states during application execution. The TDB measurement of energy draw over a

1 minute period is within 3.2% of that given by a Monsoon power meter [18]. Since

the spikes in energy draw are three orders of magnitude higher than the steady state

case, this close result can only be achieved because TDB monitors the current spikes

faithfully. For comparison, the static energy metering of iCount over a five decade

range is accurate to 20% down to about 1 µA [19].

Power Consumption of TDB: It is important that the TDB itself consume a

small amount of power, because the typical usage scenario is the TDB coupled to

the application processor board when deployed in the field. A large source of energy

saving on the application processor comes from entering a low-power sleep state when

not in use. With a small modification of the application processor’s code, to signal

when it is in sleep mode, it is also possible for the TDB to enter a low-power sleep

state.

A general purpose pin on the application processor is used to signal to the TDB

when to enter sleep mode. The sleep signal is connected to the Flash Freeze pin on

27

the FPGA. Flash Freeze is a feature of Actel’s IGLOO nano FPGAs, that allow them

to enter a low power state while still holding output pins at their previous state.

Because the JTAG controlled OCDM is implemented as an externally clocked state

machine, as long as the JTAG I/O lines remain static while in sleep mode, the OCDM

will have the same state upon wakeup. The FPGA is able to recover from sleep mode

within 1 µs.

We have implemented the necessary code to signal sleep mode in TinyOS. Only

system code is a↵ected, the application does not change. In total, we added only 10

lines of code to TinyOS. First, we initialized the general purpose pin GIO0 for output

mode in MotePlatformC. Then we modified the macro TOSH SIGNAL, which is used

to create interrupt handlers, such that the beginning of every interrupt sets GIO0 to

indicate a transition to the awake state. Finally, we modified McuSleepC to clear

GIO0 just before transitioning to sleep.

The TDB consumes 55mW when active. The current implementation does not

have the ability to disable the USB and energy monitoring components, which would

be desirable when the TDB is in sleep. However, we have measured power consump-

tion with these components removed at 18mW. Of this, 11mW are due to the 48MHz

oscillator. This could be significantly reduced with a lower frequency oscillator, mul-

tiplied to 48MHz by using the FPGA’s Phase-Locked Loop (PLL) module.

2.3.2 Application Setup

Our experiments use both TinyOS and Contiki applications without needing any

extra programming e↵ort since Aveksha is OS-agnostic by design. The only change to

the OSes is the one required due to the change of the clock source that was required

to synchronize the JTAG and application processor’s clocks for PC polling. The

clock initialization module is responsible for creating the main processor clock from

the hardware clock and for wiring other internal hardware clocks to di↵erent sources.

This module has to be changed in the OS to work with our clock setup.

28

We use two TinyOS applications TestNetworkLpl and TestFtsp and an object

tracking application in Contiki. TestNetworkLpl uses the collection tree protocol to

push sensor readings to a base station [20]. The wakeup period is set to 128ms, which

indicates how often the radio wakes up to test the channel for transmitting nodes.

This is a typical application for sensor networks. We present a bug that was uncovered

when we used the TDB to monitor all tasks in the watchpoint mode. TestFtsp is a

time synchronization protocol [21]. Finally, LightTracker is a Contiki object tracking

application takes light readings at each node and passes values that reach a threshold

to the base station through a multi-hop routing protocol. The radio wakeup period

is 125 ms [22].

2.3.3 Watchpoints

Using States to Monitor Energy: One application for the TDB is to monitor

various state variables. Monitoring state variables and transitions is useful because

they can be correlated to power consumption, and can aid in understanding the

behavior of applications (as argued in Quanto as well [13]). This is particularly

true in TinyOS, where the event-driven model encourages the use of explicit state

machines.

In TestNetworkLpl, we have instrumented the application layer, low-power-

listening layer, and the radio layer to monitor state changes. The instrumentation is

simply to place a nop instruction which can be used as a trigger in the watchpoint

mode. In the application layer, the beginning of every task and event handler is

instrumented. In the low-power-listen layer, the state changes of interest are in the

RadioPowerState module. This uses the state component interface in TinyOS, which

we instrumented with nop instructions. In the radio layer, state variables have the

postfix m state. We wrote a script that finds all assignments to these variables in

the code and inserts a nop statement after the assignment.

29

Fig. 2.7.: Watchpoint trace of states when sending a message in TestNetworkLpl,

showing the application, low-power-listening, and radio layers. The number above

each state’s timeline corresponds to the numbering of the states under the timeline.

For example, in the low-power listen layer, state 1 is S OFF and 2 is S ON; at the

beginning the state is 1, then an extended period of state 2, followed by a return to

state 1.

Figure 2.7 shows a packet send that is initiated from the application

layer when Timer.fired is triggered. The first step is to turn on the ra-

dio by starting the voltage regulator and oscillator, which is given by the

30

state variable CC2420ControlP m state. The start up takes 1.6 ms, the du-

ration of the VREG STARTING, VREG STARTED, and XOSC STARTING states. The

CC2420TransmitP m state shows the process of transmitting a message. The mes-

sage transmission takes place during the states S BEGIN TRANSMIT and S EFD. After

the message is transmitted, the sender waits for an acknowledgment, which is shown

in the CC2420ReceiveP m state. This variable shows the acknowledgment being

received at 12 ms (the S RX FCF state) after which it is read o↵ from the radio layer

(the S RX PAYLOAD state). After this, the radio turns o↵ at 32ms. A parameter of

LPL controls the delay after receive and the default is set to 20ms which is verified

by our experiment. This kind of low-level tracing of events in the stacks is useful for

a developer wanting to get a detailed understanding of how a high-level function is

accomplished (in this case, transmission of a message which requires an acknowledg-

ment). Such an understanding can be used for performance tuning (speeding up some

event in the time line, or reducing the amount of time spent in a particular state)

or for energy optimization (knowing some energy-expensive state, reduce the amount

of time the node spends in that state). This level of tracing would be very di�cult

to obtain through purely software means because of the fine-level of instrumentation

that will be required, and correspondingly the high level of perturbation that will be

caused to the normal execution of the application. On the other hand, Aveksha does

not have to make tightly coupled changes to the hardware (the radio in this case),

which are di�cult to make and in some cases impossible when the hardware or the

firmware is closed source.

Using Tasks to Debug an Application: The original objective of this experiment

was to trace the collection tree protocol in the watchpoint mode. However, during the

tracing, we observed some suspicious behavior that caused us to suspect that there was

a bug in the low power listening layer of TinyOS. This was discovered by instrumenting

all of the tasks in TinyOS for the TestNetworkLPL application. The nesC compiler

in TinyOS creates a function called SchedulerBasicP TaskBasic runTask that

contains a switch statement with a case for every task. By inserting a nop into each

31

Fig. 2.8.: Watchpoint trace of task executions during a radio start event. The

PowerCycleP startRadio task is called over 3000 times due to a bug in the handling

of the CC2420CsmaP SplitControlState.

Fig. 2.9.: Watchpoint trace of task executions with the startRadio bug fixed.

32

6

0

1

2

3

4

5

T
im

e
(m

s)
CtpRoutingEngineP__sendBeaconTask

DefaultLplP__startRadio

CC2420CsmaP__startDone_task

PowerCycleP__getCca
DefaultLplP__send

PowerCycleP__startRadio

Fig. 2.10.: Execution timeline that causes task spinning.

case, we can monitor every time any task is executed. We originally found that

Aveksha was unable to keep pace with the rate of events that is generated after the

mote is started up. Later, it turned out that this was due to a bug where some tasks

were being repeatedly and unnecessarily re-posted.

Figure 2.8 shows a trace of the tasks shortly after the mote starts

up. Three of the tasks (PowerCycleP startRadio, DefaultLplP resend, and

CC2420CsmaP sendDone task) are stuck in a spin for 128ms. This implies that

these tasks keep re-posting themselves and do not get any useful work done in each

execution of the task. The spinning tasks are the result of the order of events

that happen when the mote starts up. The timeline in Figure 2.10 shows the rel-

evant events. First the collection tree protocol routing engine CptRoutingEngineP

posts a task sendBeaconTask to send a beacon. This task results in the LPL

module DefaultLplP posting a startRadio task. The radio is duly started af-

ter 3.4ms and the radio layer CC2420CsmaP sends a signal to DefaultLplP and

PowerCycleP that the radio is started. PowerCycleP receives the signal first and

schedules the PowerCycleP getCca task, after which DefaultLplP receives the sig-

nal and schedules the DefaultLplP send task. Tasks are executed in the order

they are scheduled in TinyOS. When PowerCycleP getCca executes it schedules

33

PowerCycleP startRadio, which is executed after PowerCycle send. The task

PowerCycleP startRadio fails, because the radio is already started. This is pre-

cisely where the bug lies. The radio has already been started and therefore this task

should not re-post itself, but should return without doing anything. Eventually, when

the sending of the beacon message has completed, the radio is set o↵ to sleep and the

PowerCycleP startRadio task succeeds. This can be seen from the CC2420 state

of S STARTED toward the end of the timeline (when it is started a second time to

perform the CCA).

The buggy version of PowerCycleP startRadio is shown first.

static inline void PowerCycleP__startRadio__runTask(void) {

if (PowerCycleP__SubControl__start() != SUCCESS) {

PowerCycleP__startRadio__postTask();

}

}

The undesirable e↵ect of the bug is that fills a slot in the task queue (though a

redesign in TinyOS 2.x limits this e↵ect) and a task is being re-posted and invoked

uselessly thus using up CPU resources.

The above is a real-case where the bug is activated. We hypothesize the

following plausible application case where the bug will be activated and the

PowerCycleP startRadio task will never succeed and will keep spinning endlessly.

Consider an application that starts sending a message and shortly afterwards (af-

ter the radio has finished S STARTING and entered S STARTED state) turns o↵ low

power listening. A low power listen interval of 0 indicates that low power listen-

ing should be shut o↵ and the radio left on in receive mode. In this case, the task

PowerCycleP startRadio will never have the SUCCESS condition and will continue

to spin until the low power listen interval is again changed. We have confirmed that

this happens when the following synthetic application is executed.

event void RadioControl.startDone(error_t err) {

34

sendMessage();

// Schedule the timer to fire while

// PowerCycleP__startRadio is spinning

call Time.startOneShot(100);

}

event void Timer.fired() {

call LowPowerListening.setLocalWakeupInterval(0);

}

To fix this bug, consider what happens to the state of the CC2420 ra-

dio (shown as CC2420CsmaP SplitControlState in Figure 2.8). The function

PowerCycleP SubControl start() tries to start the radio and tests the state of

CC2420. If the state is STARTING it returns SUCCESS, if the state is STARTED it re-

turns EALREADY, and if the state is anything else it returns EBUSY. Therefore, the

simple fix to the task PowerCycleP startRadio is as follows.

static inline void PowerCycleP__startRadio__runTask(void) {

if (PowerCycleP__SubControl__start() != SUCCESS

&& PowerCycleP__SubControl__start() != EALREADY) {

PowerCycleP__startRadio__postTask();

}

}

Figure 2.9 shows that this fix indeed stops PowerCycleP startRadio from spin-

ning (except for the short time the radio is in the transmitting state).

Processes in Contiki: An advantage of our approach over software tracing is that

it is independent of the OS being used. Without any modification to the Contiki

OS, the TDB is able to generate a trace of an application. In Figure 2.11, we show a

trace of a sender node of a simple object tracking application called LightTracker [22],

implemented in Contiki [23] version 2.4. LightTracker tracks a moving light source in

a sensor network. There are two types of nodes present in the network: a base station

and a set of sender nodes. A sender node periodically (every 2 seconds) collects light

35

Fig. 2.11.: Watchpoint trace of application level functions and threads of a sender

node in the Contiki tracking application.

intensity using its light sensor and forwards it to the base station, possibly in a multi-

hop manner, if the sensed value is above a threshold. The base station periodically

checks the received samples and selects the node with the maximum light intensity.

The selected node is considered to be the current position of the light source.

Unlike TinyOS, Contiki features the use of threads as a key design compo-

nent. This reduces the need of maintaining explicit state machines in the code.

In the sender application, we place a nop at the starting point of every thread com-

mand. PROCESS BEGIN represents the creation of a thread and is performed once

at time 11 seconds. PROCESS THREAD is executed every time the thread is started.

PROCESS WAIT EVENT UNTIL is a wait statement in the thread that blocks until 2 sec-

onds have passed on the timer. The power spikes correspond well with the 125ms

radio wakeup period.

2.3.4 PC Polling

Sampling the PC counter is a quick and non-intrusive operation. It does not have

the flexibility of setting watchpoint triggers for specific conditions; however, it has

the advantage of being able to measure events with greater timing accuracy than

watchpoint polling. This is both because it is faster to take a sample of the PC

counter and because it does not have to do bu↵er management.

36

local2Global floatsisf
call
call
call
call

call
mulsf3

call
call
call
call

fixfsi

is_synced

pack_f

unpack_f

fpmul_parts

call

Fig. 2.12.: Call graph of the local2Global function in FTSP.

Fig. 2.13.: Trace of the functions invoked in one execution of the local2Global

function. Filled squares represent data collected from PC polling, and open rectangles

represent the inferred executions of each function.

A useful application of PC polling is for statistical profiling of an application, say

to determine what parts of the code are most active. Raw PC polling data cannot

directly give a profile of the number of times a function is called or the total time the

function takes to execute, inclusive of the times of the nested functions that it calls.

However, it is sometimes possible to combine knowledge of the call graph with the

raw PC polling data to discover how many times a function is called and how long each

instance executes. As an example, we examine the call graph of the local2Global

time conversion function, in the TinyOS implementation of the synchronization pro-

37

tocol FSTP. This function requires a few calls to expensive 32-bit math functions.

The order of calls in this function is fixed, and is shown in figure 2.12. In figure 2.13,

the logged events generated from PC polling are shown as filled squares. PC polling

uses a function lookup table, as described in Section 2.1. Every time a new function

is entered an event is logged. Because the PC polling rate is equivalent to 6.4 appli-

cation processor cycles, we are likely to capture every transition between functions.

Combining the events with the call graph we can determine when functions start and

end as shown by the open rectangles.

For this experiment, events are timestamped with a precision of 1 µs, which is

less than the 1.6 µs a single PC poll takes. From the start of the execution of

local2Global, to the call of floatsisf, the TDB recorded 5 µs (equivalent to 20

cycles of the application processor). A manual inspection of the assembly code reveals

that the correct cycle count is 19, which is within the expected margin of error.

2.4 Related Work

There are primarily three areas of work related to Aveksha, namely power mea-

surement, software and hardware for debugging sensor networks, and hardware sup-

port for debugging embedded systems.

Power measurement: The problem of estimating or measuring power (or energy)

consumption has been addressed extensively in the context of various electronic sys-

tems. We restrict our discussion of prior work to techniques that specifically tar-

get sensor networks. Various sensor network simulators, such as PowerTOSSIM,

Avrora, and Cooja provide energy estimation capability based on pre-built power

models of the target hardware platform. Measuring (as opposed to estimating) the

power consumed by a sensor node is usually done using the so-called sense resistor

approach (see Section 2). SPOT [15] is an energy meter for wireless sensor nodes

that is based on the sense-resistor approach and uses a voltage to frequency converter

to transform the voltage samples into an energy counter that can be read by the

38

sensor node. iCount [19] is an energy meter design that targets sensor nodes that

have a switching regulator. It provides energy metering capabilities at almost zero

cost by just counting the cycles of the switching regulator. The Energy Endoscope

project [12] uses a separate application-specific integrated circuit (called EMAP2),

implemented using a micro-power fuse-based FPGA, to perform charge accumula-

tion based on the sense-resistor method. Similar to designs such as SPOT, Aveksha

provides energy measurement capability with a large dynamic range.

Quanto [13] builds on iCount by using regression models to obtain per-component

energy consumption based on the aggregate measurement provided by iCount and

also performs energy accounting to various application tasks through causal activ-

ity tracking. Activities are tracked by calls to a software-based logger. Currently,

Aveksha does not have the ability to assign energy consumption to individual ac-

tivities, however, Aveksha could replace the Quanto software-based logger by using

watchpoints to indicate activities. This would enable use of the Quanto algorithm to

attribute energy consumption.

Sensor network debugging: Replay debugging is a well known technique for em-

bedded systems [8] and has also been proposed for sensor networks [10]. Envirolog

presents a software-only solution for recording events to flash memory [9]. Applica-

tions are annotated to indicate what should be recorded, which a preprocessor then

turns into C code. During recording, 16 to 1024 bytes of RAM are used to bu↵er

events which are then stored to Flash. FlashBox adopts a hybrid hardware/software

approach to eliminate the bottleneck of writing to Flash [16]. In FlashBox, a second

MCU and flash memory are added to provide dedicated recording. A recent software

solution [11] has focused on a specific kind of tracing (control flow tracing) and com-

bines intelligent static analysis with run-time trace compression to decrease overhead.

Nevertheless, this technique still requires applications to be instrumented to gather

the tracing information. In contrast, Aveksha not only requires no modification to

the application, but is also completely agnostic to the OS used. The above techniques

have the disadvantage that they either perturb the timing behavior of the applica-

39

tion, possibly suppressing some subtle bugs, or cause a large slowdown in application

execution.

Emulators such as Avrora and Cooja provide the ability to customize tracing

and profiling of applications. In Avrora an interface is provided for writing custom

plugins to monitor the emulation. YETI extends Cooja with a GDB proxy [24].

This allows using the GDB debugging tool to set breakpoints and watchpoints in the

code being emulated. Similar extensibility could be added to Aveksha by providing

an API to customize three points: the watchpoint conditions set by JTAG, the event

filtering algorithm performed by the FPGA, and how the MCU stores the data.

Hardware support for debugging embedded systems: Real-time trace func-

tionality has been implemented in many processor architectures. For example, the

CoreSight Trace Macrocells provides hardware cores that can be added on as periph-

erals to an ARM-based system-on-chip to produce a cycle-accurate trace of execution.

This includes the ability to collect and compress a large amount of trace data on chip

and to transfer this data to a trace port interface unit, such as JTAG. The MSP430

MCU used in the Telos mote has a limited built-in OCDM. It is typically used by

tools such as IAR [17] to record the last 8 instructions executed before a watchpoint

or breakpoint. Aveksha goes beyond this by demonstrating that it is possible to

provide CoreSight like functionality on a low end MCU commonly used in wireless

sensor nodes. Hardware designed to interface an OCDM to a host computer via the

JTAG standard is often referred to as an In-Circuit Emulator (ICE) or In-Circuit

Debugger (ICD), or more correctly, a JTAG adapter. Many ICE tools are available

for the MSP430 processor family. An example, that inspired the authors to under-

take this work, is the open source GoodFET [25]. However, the GoodFET is only

capable of operations involving reading and writing to flash. The debugging features

of the OCDM (e.g., breakpoints, watchpoints, state storage) are not documented by

Texas Instruments, and the protocol to activate these features was reverse-engineered.

There exist several point solutions for hardware meant for tracking di↵erent kinds of

control flow for the purpose of debugging, e.g., in [26], the authors design a hard-

40

ware ASIC that monitors loops taken by tasks in a multi-tasking environment and

performs this in a non-intrusive manner to the application.

41

3. SOFTWARE BASED SYSTEM-LEVEL RECORD AND

REPLAY OF WIRELESS SENSOR NETWORKS

3.1 Introduction

In this Chapter we present a sofware based approach to system-level record and

replay of WSNs.

3.1.1 Challenges of Record and Replay in WSNs

Realizing record and replay for WSNs (and to some extent in other embedded

systems) is challenging for several reasons:

Resource constraints: The record system must fit within the bounds of the severe

resource constraints typical of WSNs. In an e↵ort to reduce the cost, size, and

energy consumption of sensor nodes, the main processor and non-volatile storage

are heavily constrained in WSNs. The main processor is typically a microcontroller

(µC) which may be limited to a few MHz and RAM in the range of tens of KBs.

Non-volatile storage is usually a flash chip which may contain anywhere from a

MB to a few GB of storage. As two points of reference, the TelosB sensor node

has 1 MB of flash and the top-end Shimmer sensor node has a 2 GB SD card for

storage. Compared to the volume of raw trace data generated during record, this

storage capacity is tiny. For example, we have observed traces of generated at 1 MB

per minute in an experiment detailed in Section 3.3. Additionally, storing data to

flash is energy expensive, with frequent flash usage reducing a node’s lifetime by a

factor of 3 [27].

42

Real-time constraints: WSNs are cyber-physical systems with soft real-time constraints.

Adding instrumentation to record non-deterministic events can interfere with the

timing of the application and cause it to miss its deadlines.

Portability: There are many operating systems (OSes) for WSNs, the two most pop-

ular being TinyOS [28] and Contiki [23]. Also it is not uncommon in embedded

system development to run directly on the “bare metal” with no OS support, as

demonstrated by the GoodFET JTAG adapter [25]. Manual modification of OS

drivers or system libraries, as done in previous record and replay systems [29, 30],

hinders adoption. For this reason we seek a solution which requires minimal OS

specific adaptations. The solution should take the source code of the firmware to be

installed on the node, and produce an instrumented version which can run directly

on “bare metal”.

System-level replay: WSNs often do not have hardware enforced separation between

application and system software, due to a lack of hardware support on many µCs,

and prominent WSN OSes such as TinyOS [28] and Contiki [23] do not have a

clean separation between system and application code. This calls for solutions that

record the complete execution of a sensor node’s processor for replay, rather than

only application components as done in work such as liblog [29]. We call this

system-level record and replay, which is more expansive in scope than application-

level record and replay.

3.1.2 Tardis Approach

In this Chapter, we present the design and development of a software-only system-

level record and replay solution for WSNs called Tardis. In short, we address the

four challenges described above by handling all of the sources of non-determinism

and compressing each one in a resource e�cient manner using respective domain-

specific knowledge. For example, one type of non-determinism is a read from what

we call a peripheral register. These are registers present on the µC chip, but whose

43

content is controlled from sources external to the main processor. Reads to a register

containing the value of an on-chip analog-to-digital (ADC) converter are sources of

non-determinism. We can reduce the number of bits that must be stored for tracing

them by observing that an ADC configured for 10-bit resolution in fact only has

10 bits of non-determinism, despite the register being 16 bits in size.

The compression scheme for each source of non-deter- minism is informed by a

careful observation of the kinds of events that typically occur in WSN applications, for

example, the use of register masking which reduces the number of bits which must be

recorded—instead of the full length of the register, only the bits that are left unmasked

need be recorded. The compression schemes are also chosen to be lightweight in their

use of compute resources. Furthermore, the compression is done in an opportunistic

manner, whenever there is “slack time” on the embedded µC so that the application’s

timing requirement is not violated. By using the di↵erent compression schemes in

an integrated manner in one system, we are the first to provide a general-purpose

software-only record and replay functionality for WSNs. By “general-purpose” we

mean that it can record and replay all sources of non-determinism and thus Tardis

can be used for debugging all kinds of bugs, whether related to data flow or control

flow. Previous work in software-based record and replay for WSNs has captured only

control flow (e.g., TinyTracer [11]) or only a predetermined subset of variables and

events (e.g., EnviroLog [9]).

3.1.3 Contributions

This work makes the following four contributions through the design and devel-

opment of Tardis.

1. We make seven domain-specific observations about the events that are the

sources of non-determinism in a WSN. These observations lead us to specific

ways of compressing each respective kind of event.

44

2. We describe the first general-purpose software-only re- cord and replay solution

for WSNs. Our solution is general-purpose in that we record all sources of non-

determinism at the system level, which also makes our implementation easily

portable to other embedded OSes. We demonstrate this by collecting results

from both TinyOS and Contiki.

3. We show with experiments on real hardware, that with the constrained resources

of a typical WSN platform, we generate a 53-79% smaller trace size compared

to the state-of-the-art control flow record and replay technique [11], while being

able to capture far more sources of non-determinism and thus able to replay an

execution more faithfully.

4. We give the case study of diagnosing a previously unreported bug which had

been in the TinyOS codebase for over 7 years. This bug is in the widely used

Collection Tree Protocol (CTP), which is used for collecting data at a base

station from multiple sensor nodes, in a multi-hop manner.

Tardis is available for download at

http://github.com/mtancret/recordreplay.

3.2 Design

This section introduces the design and implementation of Tardis.

3.2.1 Overview

The main capability of Tardis is to replay in an emulator the original run of a

sensor node faithfully down to each instruction and the sequence between instructions.

Deterministic replay is achieved by starting from a checkpoint of the processor’s state,

and then replaying all sources of non-determinism [30]. There are two broad sources

of non-determinism in WSNs: external inputs from memory mapped I/O and the

type and timing of interrupts. We will use the term peripheral registers to refer to

45

Application
code

OS
code

Instrumented
source

TARDIS
Logger

TARDIS CIL (S2S)

Instrumentation
mapping

Binary
firmware

1. Compile-Time 2. Run-Time

3. Off-line Replay

Binary
firmware

RAM

Uncompressed
buffers

Compressed
buffers

Flash

Log

TARDIS Replay
Emulator Binary

firmware

Log Instrumentation
mapping

GCC

Fig. 3.1.: The Tardis debugging process consists of instrumentation at compile-time,

in situ logging of trace data at run-time, and o↵-line replay during debugging.

memory mapped I/O, which includes registers that report the value of serial I/O,

real-time clocks, interrupt flags, analog-to-digital converters, etc.

Tardis is designed to be used in situ to record events in deployed sensor nodes for

subsequent troubleshooting. The overall operational flow is depicted in Figure 3.1,

which depicts three phases: compile-time, run-time, and o↵-line replay. In the first

phase, a source-to-source C code compiler is used to insert instrumentation for record-

ing. In the second phase, the node executes in situ, and logs a checkpoint and a trace

of its execution to flash. It operates in the manner of a black box recorder; when

the flash is full, a new checkpoint is taken and the oldest data is overwritten first.

The third phase is the replay, which happens in the laboratory running an emulator

on a (comparatively) resource-rich desktop-class machine. During execution of the

application on the emulator, the trace of non-deterministic data is used to determin-

46

µC Hardware
Peripheral Registers

HPL
TinyOS

App

TARDIS LoggerInstrumentation

Fig. 3.2.: Tardis instrumentation and logger with respect to the TinyOS stack.

istically reproduce the node’s execution. These three phases as well as their basic

implementations are discussed in the following sections.

3.2.2 Compile Time

Recording Peripheral Register Reads

One goal of Tardis is to be able to record the reads of non-deterministic peripheral

registers using as little OS-specific code as possible. This is achieved through an

automated compile-time source-to-source transformation of the code that is to run

on the sensor node. All instructions which read from peripheral registers are identified

and instrumented, such that, the value of the reads are intercepted and passed to a

logger during recording. This step assumes that a configuration file has been created

to specify the non-deterministic registers of the target architecture.

We define target code as all code intended to run on the sensor (i.e., OS and

application) — WSN OSes are typically monolithic in that all target code is compiled

together into a single binary firmware. Figure 3.1 presents the compile-time process

of producing an instrumented binary. First, code files from the application, OS, and

Tardis logger are fed into Tardis CIL, a source-to-source transformer based on the

C intermediate language (CIL) [31]. Tardis CIL identifies instructions that read

from peripheral registers and instruments them, producing an instrumented source

file as one of its outputs. The other output from Tardis CIL is an instrumentation

47

mapping file which gives the location of each instrumented instruction and the type

of encoding or compression applied to the logged value. A compiler, in this case

GCC, then compiles the instrumented source into a single binary to be installed as

firmware on the sensor node. In the case of TinyOS, the instrumentation sits between

the peripheral registers and the hardware presentation layer (HPL), as shown in

Figure 3.2. The HPL is the layer of code thorough which all access to external I/O

must pass. However, because Tardis identifies register reads in C code, it does not

require the target code to have an explicitly defined HPL, for example, we tested

Tardis during its development on C code written for “bare metal” (i.e., without

an OS). At runtime, after intercepting the value read from a peripheral register, the

instrumentation passes the value to the Tardis logger.

The replay part of Tardis uses the instrumentation mapping file to decide which

instructions access peripheral registers and thus need to be fed from the log, and then

to determine how to decode the items in that log.

One alternative design approach would have been to manually instrument the HPL

to intercept all reads from peripheral registers. Such an approach would be similar to

liblog, in which a shared library (liblog) was created to intercept calls to libc [29].

Not only would this approach add to the manual e↵ort of porting Tardis to di↵erent

OSes, but it would also miss out on opportunities to reduce log size by not considering

the context in which a peripheral register value is being used in the code. For example,

we describe in Sections 3.3.4 and 3.3.3 how the identification of masking of peripheral

register values and polling loops can help to reduce or completely eliminate logging

requirements.

Recording Interrupts

To replay interrupts, Tardis logs the instructions at which interrupts are delivered

during run-time, and redelivers the interrupts at the same instructions during replay.

The instruction can be uniquely identified by the combination of the interrupt’s return

48

address and the loop count. Tardis instruments every loop body in the target code

with an increment instruction on a global counter variable — the loop counter. An

alternative approach is to use a hardware based performance counter to count the

number of branches, however, such counters are not often found in µCs [30].

3.2.3 Runtime System

A single binary containing the application, OS, and Tardis code is programmed

into a sensor node. The runtime code consists of bu↵ering, encoding, compressing,

and storing logs to flash. The reads to peripheral registers are intercepted by Tardis’s

instrumentation and it then passes it on to the logger. Note that this assumes that

peripheral registers are accessed directly, rather than through indirect addressing;

we explore the implications of this assumption further in Section 3.5. The update

function performs the check for bu↵ers that are ready to be compressed or written to

flash. Compression and writing to flash happen asynchronously from the calls to log

values so that they do not interfere with the real-time execution of the application.

The scheduling of invocation of the update function is OS specific — in TinyOS it

is called after every task execution and interrupt, while in Contiki it is called after

every thread switch and interrupt. Also Tardis must share the flash with the OS

requiring resource arbitration code.

The code for Tardis is mostly OS agnostic. There is a small amount of code

specific to the OS being instrumented, it includes calling the Tardis initialization

and update functions. For example we added 23 lines to TinyOS and 39 lines to

Contiki.

3.2.4 Replay

Replay is performed centrally, say at a lab computer, rather than at the nodes; this

is similar to the design of the overwhelming majority of record-and-replay solutions,

in embedded domains and otherwise. This means the checkpoint and log must be

49

collected at a central location. An emulator (mspsim in our case [2]) is modified

to deliver non-deterministic register values and interrupts to the application during

replay. The emulator starts from a memory checkpoint or known starting state (e.g.,

boot-up). For replay, the binary is executed until a register read or the next interrupt

in the log is encountered. Whenever a read from a peripheral module register is

encountered, a map file generated at compile time is consulted to determine how the

register has been encoded. Based on this information the register is decoded from the

log. The emulator also knows the next interrupt in the log. When the return address

and loop count match the next interrupt in the log, the interrupt is executed. Since

all sources of non-determinism recorded during runtime are fed into the emulator,

this faithfully reproduces the execution.

3.2.5 Debugging Workflow

A typical workflow for debugging in Tardis starts with simple invariants used

to check for the correct operation of the network. For example, an invariant at the

basestation may check that no more than a threshold amount of time has passed since

the last message was received from each node in the network. When any invariant

is violated the basestation broadcasts a command to all nodes in the network to

not overwrite their current traces. The broadcast is performed using a common

dissemination protocol, which does not depend on the routing protocol. Then a

programmer is alerted of the problem. The programmer can wirelessly collect traces

from the nodes in order to replay their execution.

3.3 Encoding and Compression of Non-Deterministic Data

This section describes how we e�ciently trace non-determinism in Tardis.

50

Table 3.1.: Summary of key ideas and benefits of Tardis compression methods.

Observation Design Result

Some registers are deter-

ministic

Consult table of register

definitions

26.8% log reduction

Can skip polling loops

during replay

Detect and ignore polling

loops

25.9% log reduction

Register reads are often

masked

Detect and ignore masked

bits

56.7% log reduction

Nodes spend most time in

sleep

Return address is pre-

dictable when interrupt

during sleep

12.7% interrupt log re-

duction

Small delta between

reads of timer

Use delta encoding 72.7% timer log reduction

State registers are highly

repetitive

Run length enconding 47.8% state log reduction

Data registers compress-

ible with general algo-

rithms

LZRW-T 65.7% data log reduction

51

Interrupts

State registers:

Data registers:

Baseline: Logging only
non-deterministic registers
Log growth = 12.9 KB/s

12.8%

11.2% Timer registers:

6.3%

69.7%

Interrupts

State registers:

Data registers:

TARDIS:
Log growth = 1.5 KB/s
(88.4% reduction)

51.3%

23.4% Timer registers:

17.5%

7.8%

Fig. 3.3.: Comparison between baseline and Tardis.

3.3.1 Overview

Up until now we have described the non-deterministic data required for replay and

how Tardis instruments the target code for logging. One may wonder why a simple

design does not su�ce — record all the sources of non-determinism during execution

on the node and store them to stable store, then bring the trace back to a central

node for replay. This is due to the fact that the rate of non-deterministic data is too

high for the resources of today’s WSNs, even for simple regular applications.

For example, consider the TinyOS application MultihopOscilloscope (MHO) that

collects sensor data at each node at a one second interval and propagates the data to a

base station at a five second interval. We ran MHO on a small five-node network with

all nodes in radio range of the base station and Low Power Listening (LPL) enabled

with a wake- up interval of 64 ms. (More details about this experimental setup can be

found in Section 3.4.1.) For this configuration, we found that recording all interrupts

and reads from peripheral registers produces a log at a rate of 15.1 KB/sec. Ignoring

deterministic registers (e.g., peripheral control registers), the log rate is 12.9 KB/sec.

In this paper, we use logging all interrupts and only the non-deterministic registers as

our baseline, as described in Section 3.3.2. A rate of 12.9 KB/sec would fill the 1 MB

52

flash on the TelosB in 78 seconds. The flash shares the I2C bus with the radio, and

with a write throughput of 170 KB/sec, the flash would require a 7.6% utilization of

the I2C bus. This could interfere with the application. Additionally, it increases the

average power consumption by 4.4 mW, which is significant to the TelosB which has

a sleep current of just 3 µA.

In the following we describe how we meet the challenges through careful selection

of what to record (Sections 3.3.2-3.3.5) and encoding and compression (Sections 3.3.6-

3.3.8). Using observations of typical WSN applications and deployments to guide our

design, we are able to achieve significant compression using low cost compression tech-

niques. We structure the description of each technique as the observation we glean

from many WSN applications and hardware architectures, followed by the technique

we implement in Tardis, and then giving the quantitative result to show the e↵ec-

tiveness of the technique (Table 3.1 presents an overview of these findings). These

results are collected from the TinyOS application MHO running on actual TelosB

motes in a network configuration described above. The snapshot of the results are

shown in Figure 3.3. The evaluation section shows the overall benefit of Tardis,

with all these techniques operating together, for a wider variety of applications.

3.3.2 Non-determinism of Registers

Observation: It is not the case that all of the peripheral registers are non-deterministic.

Some of the peripheral registers are used for configuring the peripheral. For example,

IE1 is an interrupt enable register, which is used to enable particular interrupts. The

value of this register is only set by software and is therefore deterministic. Even for

those registers which are non-deterministic, it is sometimes the case that not all of

the bits in the register are non-deterministic. For example, ADC12CTL1 is a 16-

bit register that is used by software to control the ADC. However, it has a single

non-deterministic bit, which acts as a flag to indicate whether the ADC is busy.

53

Design: Tardis avoids recording reads from deterministic registers by consulting a

register mapping file that specifies which registers and which specific bits are actu-

ally non-deterministic. This file must be manually created once for each processor

architecture.

Result: Logging only non-deterministic registers as opposed to all peripheral reg-

isters results in a 14.5% reduction. For all remaining results, logging only “non-

deterministic registers” is the baseline. Logging only non-deterministic bits is a 14.4%

reduction over baseline.

3.3.3 Polling loops

Observation: Polling loops are commonly found in embedded systems code. An

example of a polling loop is where the µC transmits a byte to the SPI bus for network

communication, then it stays in a loop until the transmit complete flag is set, before

transmitting the next byte. The following code is taken from Contiki where IFG is

the interrupt flag register and TXFLG=1 is a mask for the least significant bit that is

cleared when transmission is finished for this byte.

while (IFG & TXFLG);

Design: In the example, IFG is read multiple times before the byte has finished being

transmitted. Normally, Tardis would log each read. However, the loop itself does

not modify global or local memory, and it will eventually exit. Therefore, it is safe

for replay to simply skip beyond the loop without losing the property of deterministic

replay. There is however one consequence of skipping the loop, and that is losing the

cycle accuracy of the replay. However, the time to transmit a byte is predictable,

particularly because the SPI bus uses a multiple of the main CPU clock for timing,

and can be accounted for by the replay emulator without needing to keep track of

how many times the check executed.

Result: Removing polling loops reduces the log size by 25.9% relative the baseline.

54

3.3.4 Register Masking Pattern

Observation: Register masking is a common pattern in embedded systems. Take for

example the case of the interrupt flag register, where each bit represents a di↵erent

condition. It is common to test one specific condition, so a register value is bitwise

ANDed with a mask, which typically has a single bit set as one. In the following line

of code, a mask (TXFLG) is applied to test if the transmit flag is set in the interrupt

flag register (IFG).

not_done_transmitting = IFG & TXFLG;

Design: It is su�cient to record only the value of the unmasked bits. This can lead

to a significant savings, in the above example a 16-bit register read can be stored as a

single bit. Tardis CIL checks for the register reads that are masked, and instruments

the recording of only the unmasked bits.

Result: Removing masked registers results in a reduction of 56.7% relative to base-

line.

3.3.5 Sleep-wake Cycling and Interrupts

Observation: An important design feature of WSN programs is sleep-wake cycling

— the ability of the node to spend most of its time in a low-power sleep mode where

the main CPU clock is disabled and only wakes up for short bursts of activity before

going back to sleep [32–34]. Without this feature the batteries of a mote such as the

Telos would drain in days, rather than last for as long as 3 years at a 1% duty cycle.

Design: One of the sources of non-determinism is the timing of interrupts, which

as described in Section 3.2.2 requires logging the interrupt vector (4-bits), the return

address (16-bits), and the loop count (16-bits). This results in a 36-bit log entry for

each interrupt. However, the entry can be significantly reduced for interrupts which

wake the node from sleep. Upon reaching a sleep instruction, Tardis Replay knows

that the next interrupt vector must be delivered, so the return address and loop count

55

do not need to be recorded. This is because there is only one way to exit sleep — an

interrupt.

Result: Interrupt compression results in a 12.7% reduction of the interrupt log. The

logging of interrupts accounts for only 12.8% of the baseline log, but they are 51.3%

of the log after all other compressions have been applied.

3.3.6 Timer Registers

Observation: Timer registers are counters that are incremented on the edges of

either a real-time clock or the main CPU clock. When a timer register either overflows

or reaches the value of a capture/compare register, a timer interrupt is fired. The

first read of a timer following a timer interrupt is likely to result in a value which is

close to the value of the capture/compare register that caused the interrupt, or zero if

the interrupt was caused by an overflow. The di↵erence in time, and therefore value,

between successive reads of timer registers is likely to be small. This is because all of

the activity following an interrupt happens within a small period of time, due to low

duty cycle operation, as pointed out in Section 3.3.5.

Design: The delta between subsequent timer reads is encoded. The exception is that

first timer read following a timer interrupt is encoded based on the di↵erence between

the capture/compare register (or zero for overflow). Tardis encodes the di↵erence

between the predicted value and the actual value using prefix codes to shorten the

length of small values.

Result: Compression reduces the size of the timer log by 72.7%.

3.3.7 State Registers

Observation: Some of the peripheral module registers exhibit strong temporal lo-

cality. For example, a flag bit that indicates whether an overflow has occurred in a

timer will usually be set to zero, because the overflow case is less common — when

the timer expires. As another example, six capture/compare registers are used to

56

time di↵erent events. In a typical application, one of the capture/compare registers

may be used to time a high frequency activity such as sampling a sensor, while the

others are associated with less frequent activities. The registers with less frequent

activity will contain the same state over long periods of time. The observation is that

most reads to registers reporting the status of some peripheral module have the same

value on consecutive reads.

Design: Because of the high level of repetition, state registers are compressed with

Run Length Encoding (RLE).

Result: RLE reduces the state register log by 47.8%. In the baseline, state registers

account of 69.7% of the log, but after all compressions have been applied they account

for only 7.8% of the log.

3.3.8 Data Registers

Observation: Two common WSN features, sensors and radios, account for another

source of non-deterministic reads. We classify the peripheral registers that contain

sensor and radio data as data registers. These registers are quite compressible due

to repeated sequences. For example, radio messages contain header information that

is often similar from one message to the next. Sensor readings often have repeating

values or slowly changing values because of the slowly changing nature of the physical

environment.

Design: Data registers are compressed using a generic compression algorithm. We

created LZRW-T, which is similar to LZRW [35], but implemented for the MSP430

processor. Like other LZ77 [36] based algorithms, LZRW-T uses the previously com-

pressed block as a dictionary. The advantage of LZRW-T is that it has a very small

memory footprint, which is critical in systems like WSNs that have only kilobytes of

memory. LZRW-T is configured to use a sliding window of 128 bytes along with a

hash table of 64 bytes for a total implementation of 192 bytes in RAM.

Result LZRW-T results in the reduction of logged data registers by 65.7%.

57

State/Timer Stream:
if type == state then write
 0b111<6-bit index><8-bit run_length><X-bit value>
if type == timer and delta < 4 then write 0b0<2-bit delta>
if type == timer and delta < 64 then write 0b10<6-bit delta>
if type == timer and delta >= 64 then write 0b110<16-bit delta>

Generic Stream (LZRW-T):
if no matching sequence found then 0b0<8-bit value>
if matching sequence found then 0b1<8-bit offset><8-bit length>

Interrupt Stream:
if loop_count == 0 then write 0b0<4-bit vector>
if loop_count < 256 then write
 0b10<4-bit vector><16-bit return_address><8-bit loop_count>
if loop_count >= 256 then write
 0b11<4-bit vector><16-bit return_address><16-bit loop_count>

Fig. 3.4.: Logging format.

3.3.9 Log Format

The log is stored in three independent streams: state/timer, generic, and inter-

rupts. The bit format for the three streams is provided in Figure 3.4. Every read from

a state register in the program’s code is given a unique id. Indexing based on read

instructions rather than register addresses is necessary, because two di↵erent read

instructions of the same register may have a di↵erent number of non-deterministic

bits that need to be stored due to masking as described in Section 3.3.4. Reads from

timer registers are reproduced during replay in the same order as they were logged, so

no index is required. The timer delta is stored as described in Section 3.3.6. Generic

register reads are stored using the LZRW-T compression format. Interrupts require

storing a vector, a return address, and a loop count. Loop counts are typically very

small because the count is reset after every sleep period, which lends itself to com-

pression using prefix codes. A loop count of zero eliminates the need to store a return

address because the replay code knows that the next interrupt occurs immediately

following the next sleep period.

58

3.4 Evaluation

In this section, we substantiate our claim that domain-specific compression tech-

niques used by Tardis can significantly reduce trace size yet operate with tolerable

overheads. To evaluate Tardis, we measured both the cost and the benefit for typ-

ical WSN applications from two widely used OSes (TinyOS and Contiki) running

on real hardware (TelosB motes). Benefit is measured by the reduction in the size

of the log stored to flash. Cost is measured by both static and runtime overheads.

Runtime overhead is measured in energy and CPU usage, whereas the static overhead

is measured in program binary size and RAM usage. As we show in the following,

the domain-specific compression techniques used by Tardis can significantly reduce

the trace size – a 77%-92% reduction – whilst imposing only tolerable overheads.

In addition, we demonstrate how trace sizes are reduced by 53-79% with respect to

the state-of-the-art control flow record and replay technique TinyTracer [11] whilst

enabling diagnosis of a much wider class of bugs than TinyTracer. Finally, we give

the case study of diagnosing a previously unreported bug.

3.4.1 Experimental Setup

The experiments are conducted either with a single TelosB node, or in a network

of 9 TelosB nodes. The 9 nodes are arranged in a grid with 1m separation between

adjacent nodes, and the base station is at a corner. All of the nodes are in radio range

of each other, which represents the worst case in terms of the rate of non-deterministic

inputs, because of the radio tra�c overheard at each node. The experiments involving

a single node represent an inactive network (i.e., no radio tra�c).

The experiments are run for three benchmarks. We chose two of the benchmarks,

namely MultihopOscilloscope (MHO) and Collect, because they are representative

middleware-type applications in TinyOS and Contiki respectively. We chose Earth-

quake Monitor (EM) as the third benchmark to test a higher-level application and

59

one that significantly stresses the sensors and the related computation to deal with

the sensed data.

MultihopOscilloscope (MHO) is a typical data collecting WSN application. In

MHO, each node samples a light sensor at a rate of 1 Hz, and forwards the measure-

ments to a base station every 5 readings. By default MHO has the radio turned on

all of the time. Energy savings come through enabling Low Power Listening (LPL),

a Media Access Control (MAC) level protocol where the radio is turned on at a fixed

interval to perform a Clear Channel Assessment (CCA), and immediately turned back

o↵ if there is no activity. In the results “MHO” indicates the node being recorded is

alone and not in a network, “MHO Wakeup=” indicates LPL is employed with the

given wakeup interval, and “MHO Network” indicates the node being recorded is in

a network of 9 nodes. A higher wakeup interval means the node wakes up less often,

and therefore is expected to generate less non-deterministic data. It is important to

observe Tardis behavior in a inactive network because that is the common condition

in WSNs where LPL was designed to provide the most significant energy savings, as

the radio is turned o↵ most of the time.

Collect is an example application distributed with the Contiki operating system.

Its purpose is similar to that of MHO; every 20 seconds each node sends a message

containing readings for 5 di↵erent sensor sources.

Earthquake Monitor (EM) is a TinyOS application patterned after [37], however

we reimplemented it for our experiments since the application was not available from

the authors. In EM, each node samples an accelerometer at a rate of 100 Hz for

1 second. At the end of the sampling period it performs a Fast Fourier Transform on

the sampled data, sends a message over the radio, and then begins the next sampling

period. The sample rate of 100 Hz is considered su�cient for the application of

earthquake monitoring [38]. We run EM in a single hop mode with each node sending

directly to a base node.

60

0.0#
2.0#
4.0#
6.0#
8.0#
10.0#
12.0#
14.0#
16.0#

MHO# MHO#
Wakeup#
=#64ms#

MHO#
Wakeup#
=#512ms#

MHO#
Network#

MHO#
Network#
Wakeup#
=#64ms#

MHO#
Network#
Wakeup#
=#512ms#

EM# Collect#

Si
ze
%in
%F
la
sh
%(K

B/
s)
% TARDIS# Uncompressed#

(a) Rate of log growth for Tardis and uncompressed.

0.0#

0.5#

1.0#

1.5#

2.0#

2.5#

3.0#

3.5#

MHO# MHO#
Wakeup#=#
64ms#

MHO#
Wakeup#=#
512ms#

MHO#
Network#

MHO#
Network#
Wakeup#=#
64ms#

MHO#
Network#
Wakeup#=#
512ms#

EM# Collect#

Si
ze
%in
%F
la
sh
%(K

B/
s)
% interrupts#

Amer#

data#

state#

(b) Size of di↵erent log components for Tardis

Fig. 3.5.: Rate of log growth and the size of di↵erent log components for Tardis.

Uncompressed log rate shown for comparison.

3.4.2 Runtime Overhead

The runtime overhead includes the amount of flash used to store the log, and the

additional energy and CPU time expended for tracing, a cost of using Tardis.

61

Flash Size

Figure 3.5(a) shows the rate of log growth for Tardis and for an uncompressed

trace. We see that for MHO single node, the log size is reduced by 92%, 94%, and

90% compared to the uncompressed traces for the various wakeup intervals—no LPL,

64 ms, and 512 ms respectively. For MHO Network mode, the reduction in log size

is 80%, 86%, and 77% respectively. This points to the fact that with a lightly loaded

network, there is both less source of non-determinism and the non-deterministic data

is also more compressible, e.g., states change less frequently. When going from a

wakeup interval of 64 ms to 512 ms the compressed trace size increases along with

an increase in both interrupt and timer log sizes as seen in Figure 3.5(b). Although

512 ms wakes up the radio less frequently, sending a message takes a much longer

time – 512 versus 64 ms – during which time more interrupts and timer reads are

executed. Plain MHO is clearly the least expensive to log, because it does not need

to periodically wake the radio to perform clear channel assessments, and messages

are sent in the shortest time. For EM, Tardis reduces the log rate by 83%, and for

Collect the reduction is 78%.

The worst case in terms of greatest rate of log data generation with Tardis is

MHO in the network mode with a wakeup interval of 512 ms in which the log grows

at 3.3 KB/s. This means that it will fill up 50% of the TelosB flash (i.e., 50% of

1 MB = 500 KB) in 2.5 minutes. Compare this to the baseline case where 50% of the

flash will be utilized for logging in just 35 seconds. 50% is significant because that is

when a new checkpoint is taken. The entire RAM of the TelosB is 10KB and can be

stored to flash in 191ms. MHO when the network is not active fills 50% of the flash

in 83 minutes. This re-emphasizes the point that in a lightly loaded network, far less

non-deterministic data is generated and consequently, Tardis is more lightweight in

its operation.

Figure 3.5(b) shows the size in flash of the logged interrupts and the timer, data,

and state registers. The classification of registers is based on our observations made in

62

0"
10"
20"
30"
40"
50"
60"
70"
80"

MHO" MHO"
Wakeup"
="64ms"

MHO"
Wakeup"
="512ms"

MHO"
Network"

MHO"
Network"
Wakeup"
="64ms"

MHO"
Network"
Wakeup"
="512ms"

EM" Collect"

Av
er
ag
e'
Po

w
er
'(m

W
)'

TARDIS"
Unmodified"

(a) Average power consumption

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"

MHO" MHO"
Wakeup"
="64ms"

MHO"
Wakeup"
="512ms"

MHO"
Network"

MHO"
Network"
Wakeup"
="64ms"

MHO"
Network"
Wakeup"
="512ms"

EM" Collect"

Du
ty
%C
yc
le
%

TARDIS"
Unmodified"

(b) CPU duty cycle

Fig. 3.6.: Average power consumption and CPU duty cycle of Tardis instrumented

and unmodified applications.

Section 3.3. The largest component in the case of MHO Network is interrupts which

is due to interrupts not being as compressible as the registers as shown in Section 3.3.

A heavily loaded network exacerbates the issue because it reduces the opportunity

for sleep compression explained in Section 3.3.5.

63

Energy Overhead

The average power consumption of a Tardis instrumented application and the

respective unmodified application are shown in Figure 3.6(a). When the application

is not using LPL, there is less than 1% increase in average power consumption be-

tween an unmodified application and a Tardis instrumented application. However,

with LPL enabled, the increase in power consumption is between 19% and 146%.

Programing a page (256 Bytes) into flash consumes 45mW (a relative power hog)

but it only takes 1.5 ms (a relatively short period). The results show that the flash

itself is not what is consuming significant power. Instead it is the time taken to

record interrupts and reads, along with the time to write to the flash, that keeps the

radio active longer, and reduces the energy savings of LPL. This can be seen by the

increase in power consumption by Tardis when going from 512 ms to 64 ms, there

are 8 times as many radio wake-ups for channel assessment at 64 ms and Tardis

is keeping the radio awake longer due to logging. Future work could be directed at

deferring encoding and flash write operations until the radio returns to sleep. This

relies on having large enough bu↵ers that can accommodate all the data until it is

time to write the bu↵er contents to flash.

CPU Overhead

The duty cycle, the fraction of time the CPU is active, is shown in Figure 3.6(b).

Unmodified MHO has a higher duty cycle for 512 ms than 64 ms because of the

longer time to send messages. As explained with energy overhead, Tardis keeps the

node awake longer when the radio wakes up for channel assessment which explains

the higher duty cycle for 64 ms with Tardis.

CPU time could be reduced by using DMA to transfer log pages to flash. In the

current implementation, the CPU is used to perform transfers.

64

0"

10"

20"

30"

40"

50"

MHO" EM" Collect"

Pr
og
ra
m
'R
O
M
'(K

B)
'

TARDIS"
Unmodified"

(a) Program size

0"

2"

4"

6"

8"

10"

MHO" EM" Collect"

Pr
og
ra
m
'R
AM

'(K
B)
'

TARDIS"
Unmodified"

(b) RAM size

Fig. 3.7.: Tardis memory overhead in terms of program binary size and statically

allocated RAM size.

3.4.3 Static Overhead

The program binary size, shown in Figure 3.7(a), increases due to the Tardis

runtime system code and the instrumentation of the reads and interrupts. In the

target WSN OSes TinyOS and Contiki, there is a single image on the node that

executes. This single image consists of both the system code and the application

code and thus our program binary size refers to the size of this single image. The

Tardis instrumentation of the code consists of inserting calls to the logger for loop

counting, interrupts, and reads from peripheral registers. The increase in size for the

tested applications range from 23 to 25%, and they fit within the MSP430’s 48 KB

of program memory.

Figure 3.7(b) shows the statically allocated RAM both with and without Tardis

instrumentation. Only statically allocated RAM is shown because Tardis does not

use dynamically allocated RAM. The increase in statically allocated RAM is due

to bu↵ers, and the internal data structures used in compression. Tardis consumes

about 2.6 KB of RAM. The MSP430 has a total RAM size of 10 KB. This RAM

consumption can be considered significant for some applications. However, note that

this consumption is tunable, one can trade o↵ greater flash usage for lesser RAM

65

usage. If the RAM allocated to the bu↵ers is smaller, then it will fill up quicker and

more frequent logging to flash will occur.

3.4.4 Comparison with gzip, S-LZW, and TinyTracer

An obvious question that arises with respect to the contribution of Tardis is how

well a simple compression of the non-deterministic log would perform. We compare

Tardis to the general purpose compression algorithm gzip and to the specialized

sensor network compression algorithm S-LZW [39]. To be suitable for sensor net-

works, the compression algorithm should not require a significant amount of RAM.

The TelosB has only 10 KB of RAM, while gzip uses a 32 KB sliding window,

which makes it unsuitable for our application. S-LZW was designed specifically with

sensor networks in mind, and uses a dictionary size of 2KB. In comparison, the

complete RAM requirements of Tardis, which include bu↵ers for writing to flash,

is 2.6 KB. Figure 3.8 shows how well gzip and S-LZW compress the the trace of

non-deterministic data (i.e., reads from peripheral registers and interrupt timings).

Tardis had a reduction of log size of 76% and 96% compared to gzip and S-LZW

when compressing MHO. In the case of Blink, the log of Tardis is 2.7 times larger

than that of gzip and 3% smaller than that of S-LZW. Blink is a very simple appli-

cation, it repeatedly blinks three LEDS at regular intervals of 1 Hz, 2 Hz, and 4 Hz,

which makes the trace easily compressible by the generic gzip. Importantly gzip has

a large window size requirement.

Another approach to trace debugging is to record and replay only control flow.

Unlike the complete replay provided by Tardis, control flow cannot reproduce the

state of memory. Many types of bugs are di�cult to diagnose with only control flow

available, for example, corruption to a message or bu↵er, an out of bounds index, or

an illegal pointer value. The latter two are particularly important to µCs which have

no hardware memory protection. The control flow only approach was proposed in

TinyTracer [11].

66

1"
10"

100"
1000"

10000"
100000"

 TA
RD

IS
"

 gz
ip
"

no
n0

de
te
rm

in
ism

"
 S0

LZ
W
"

no
n0

de
te
rm

in
ism

"
 U
nc
om

pr
es
se
d"

no
n0

de
te
rm

in
ism

"

"
Ti
ny
Tr
ac
er
"

 U
nc
om

pr
es
se
d"

Co
nt
ro
l"F
lo
w
"

Si
ze
%in
%F
la
sh
%(B

yt
es
/s
)% MHO"

Blink"

Fig. 3.8.: Size of log in flash for compression methods Tardis, gzip, S-LZW, and

TinyTracer. TinyTracer only records control flow.

Figure 3.8 shows the compression results for TinyTracer. “Uncompressed non-

determinism” and “uncompressed control flow” are the uncompressed logs for Tardis

and TinyTracer respectively. We observe that the size of trace generated by Tardis

is 79% (for Blink) and 53% (for MHO) smaller than the trace size of TinyTracer.

This result was counter-intuitive to us because Tardis has a more comprehensive

set of events that it records. The reason for the log size reduction in Tardis is

that Tardis records only the non-deterministic inputs whereas TinyTracer records

the e↵ect of non-deterministic inputs, which is the cascading set of function calls

triggered by non-deterministic inputs. Tardis not only reduces the trace size but

also aids in diagnosis of many faults by reproducing the entire execution faithfully

including both control and data flow. In contrast, the lack of data flow information

in TinyTracer limits the types of faults that can be diagnosed.

67

3.4.5 CTP Bug Case Study

In this section, we demonstrate how Tardis can be used to aid in debugging,

using a previously unreported bug in the Collection Tree Protocol (CTP) as a case

study [20]. The bug is triggered when temporary network partition occurs for several

seconds due to failure of radio links in the network. The consequence of the bug is

that the nodes on the far side of the partition, i.e., on the side away from the base

station, are not able to successfully route data messages to a base station for as long

as 25 minutes. This is against the principle of CTP which is designed to repair broken

routes very quickly — typically within seconds — when data messages need to be

delivered.

Description of CTP

CTP is used to collect data in a network by providing anycast communication

to a set of root nodes, or base stations. As part of route establishment, all of the

nodes broadcast beacons containing a routing metric that represents the expected

number of transmissions (ETX) to reach the base station. Each node chooses its best

next hop to a base station as the neighbor with the lowest ETX after receiving three

consecutive beacons from that neighbor.

CTP di↵ers from previous beacon based approaches in that the rate at which

a node sends beacons is dynamic and based on network conditions. Initially, the

beacon interval is set to its lowest value of 128 milliseconds. In order to save energy,

the beacon interval increases exponentially up to 512 seconds as routes stabilize.

Description of the Bug

We use Figure 3.9 as an example network where the transient failure of the link

between nodes 4 and 5 causes the network to become temporarily partitioned. After

the network becomes partitioned, the nodes on the far side of the partition (nodes

68

Node
Radio connectivity

0

2

3

1 4 5

6

7

8

Transient link

Fig. 3.9.: The radio topology of the network used to study the bug, node 0 is the

base station. The bug is triggered when the radio link between nodes 4 and 5 fails

for several seconds.

5 through 8) remove their routes to the nodes on the base station side (nodes 0

through 4), and eventually from their routing tables altogether. Nodes 5 through 8

repeatedly choose each other as the next hop neighbor as no route to a base station is

present. After the partition is repaired, establishing a route to one of nodes 0 through

4 requires observing at least three beacons from those nodes. The problem is that

nodes 0 through 4 are sending beacons at the slowest rate of once every 512 seconds.

As a consequence, node 5 will not reestablish node 4 as its next hop neighbor for

as long as 1536 seconds (= 512 ⇥ 3) or 25 minutes. The reason for slow beacon

rate at nodes 0 through 4 is that a good route to the base station has already been

established and there is no need to update their routes.

Experimental setup

This bug can be reproduced in lab by creating an artificial network partition

by moving the nodes away from the network. In a real network there are many

reasons that radio links might fail for several seconds creating network partitions. For

example, radio links fail when noise floor is increased by other electronics or when

69

path loss is created by a temporary high power source obstruction passing between

nodes.

To explore this bug, we used a testbed of Telosb nodes in the network layout as

shown in Figure 3.9. The nodes are running MultihopOscilloscope and TinyOS 2.1.2.

The radio link between nodes 4 and 5 was broken at 30 seconds and re-established at

50 seconds by moving nodes 5 through 8 away from the network. Even though the

partition was repaired in 20 seconds, it took over 25 minutes for data messages from

nodes 5 through 8 to reach the basestation.

Diagnosing the Bug with Tardis

As described in Section 3.2.5, the typical workflow is for simple invariants to be

checked at the basestation. An invariant can require that a message from each node is

received within a time period, for example, MultihopOscilloscope expects data every

5 seconds. When the invariant is violated, the basestation disseminates a command

to all nodes to not overwrite their traces starting at the current time. It is useful that

the dissemination does not depend on the CTP routing protocol. Also dissemination

provides eventual delivery, so that when the radio links recover from the failures the

command will be delivered.

A key advantage of Tardis is that it can replay the complete state of memory,

unlike TinyTracer which only records control flow or Envirolog which must be in-

structed what values to record [9, 11]. In this case, ETX is a key variable, which

can be replayed without any additional instrumentation. ETX is the metric used to

decide which node should be the next hop. Figure 3.10 show the ETX value after

every call to route update on node 5. At 30 seconds, the increasing value is caused

by the partitioned nodes repeatedly choosing each other as the next hop neighbor

without any route to a base station actually being present. The continuously rising

ETX is a sign that the network has become partitioned, the programmer will want to

know duration of the partition and if that is the only cause for the missing data. By

70

0"
200"
400"
600"
800"
1000"
1200"
1400"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90"100"110"120"

ET
X$

Time(s)

Node"4"

Node"5"

Fig. 3.10.: The ETX values on nodes 4 and 5. Due to the bug, the ETX of node 4

continues to grow even after the link is repaired at 50 seconds.

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100"110"120"
Time%(s)%

Fig. 3.11.: Beacon messages sent by node 5 and received by node 4.

replaying the nodes and observing the partitioned node’s routing tables, it is possible

to see that node 5 was connected to node 4 before the partition. This would lead the

programmer to node 4. Figure 3.11 shows from the perspective of node 4, all of the

beacons received from node 5.

It is clear that the radio link between nodes 4 and 5 was repaired by the 50 second

mark, only 20 seconds after that partition began. While the beacon rate is very high

at node 5, node 4 is sending beacons at the lowest rate of every 512 seconds. This

leads the programmer to conclude that node 4 is missing a condition that will cause

71

it to reset its beacon interval in this scenario because three beacons from node 4 will

help node 5 to find a better path to the base station through node 4.

Bug Fix

The suggested fix is to add an additional condition to reset the beacon interval

of CTP. The beacon interval is reset when a beacon is received with an ETX that

is significantly larger than the node’s own ETX. The intuition is that nodes within

one radio range (neighbors) should not have significantly di↵erent ETX values. The

following code is added to the receive beacon function.

if (rcvBeacon ->etx > routeInfo.etx + 100)

{ call CtpInfo.triggerRouteUpdate (); }

We chose ETX di↵erence of 100, representing 10.0 expected retransmissions, be-

cause it is much higher than the expected ETX di↵erence between neighbors, which

is usually around 20. In this case, resetting the beacon interval (which is done by

triggerRouteUpdate would cause a node to send beacons at the highest rate of every

128 milliseconds. These beacons would help the distressed neighbors with very high

ETX values to pick that node as the next hop almost instantaneously.

Cost of Logging

Tardis logging rate is low enough that the traces can be collected for a duration

much longer than the partition period. The rates of Tardis log growth for both

nodes 4 and 5 are shown in Figure 3.12. During normal operation in the first 30

seconds the logging rate at both nodes is below 1 KB/s. This quickly changes for

node 5 when the partition starts at 30 seconds. The increased logging is caused by

an increase in radio messages being sent and received. This is because data messages

are being fruitlessly forwarded through routing loops, and beacons are being sent at

the highest rate by nodes on the far side of the network.

72

0"

2"

4"

6"

8"

10"

12"

14"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100"110"

Lo
gg
in
g&
Ra

te
&(K

B/
s)
&

Time&(s)&

Node"4"

Node"5"

Fig. 3.12.: The rate at which the log grows at nodes 4 and 5. The link between nodes

4 and 5 fails at 30 seconds and returns at 50 seconds.

Node 4 sees an increase in logging only after the partition is repaired at 50 seconds.

The high logging rate is caused by the beacon messages received from node 5.

3.5 Discussion

There are some limitations in the current implementation of Tardis CIL. Expres-

sions containing a read from a peripheral register can only be identified if the register

is addressed with a constant. This is the typical method for addressing registers be-

cause they are at fixed locations in memory. One exception is the ADC data registers

which form a 15 word array of registers. Tardis CIL could be modified to instru-

ment all instructions with a memory reference where the base is a constant equal

to a peripheral register address. Another limitation is Tardis CIL cannot identify

reads from DMA. DMA can be used to transfer peripheral register values to memory,

resulting in memory containing non-deterministic values. A solution would be for

73

Tardis CIL to instrument the DMA interrupt handler with code that discovers the

range of memory written to and transfers the block of memory to the logger.

Our current work focuses on the replay of a single node. Messages received by

the node are faithfully reproduced from the captured non-determinism. However, for

bugs which are manifested through the interaction of multiple nodes, it is useful to

replay nodes in a consistent manner, meaning no message receives are replayed before

their corresponding message sends. The standard method is to use Lamport clocks

and has been illustrated for distributed record and replay by liblog [29]. A recently

proposed lightweight causality tracking technique, CADeT, is specifically designed

for resource constrained WSNs [40]. This technique only requires recording a couple

of additional counters per message to the log and could easily be applied to Tardis.

3.6 Related Work

We structure our discussion of related work in three categories — (1) record and

replay of single nodes (on desktop class machines), (2) record and replay in distributed

applications, and (3) WSN debugging.

3.6.1 Replay of Single Nodes

One class of solutions deals with multiprocessor machines and how to handle the

non-determinism introduced by di↵erent processes running on the di↵erent processors

on the same machine. The challenges are to determine what needs to be logged — the

complete logging involves assigning a global order to all shared memory accesses and

this incurs a 10-100⇥ runtime overhead [41]. Some recent techniques [42] make the

observation that the thread access orders of shared memory locations can be recorded

cheaply with support from static analysis. R2 [43] allows developers to choose which

application functions to record. Our work is simplified by not considering the added

burden of non-determinism introduced by multiple core and processor systems. This

74

is justified by the rarity of multiple core µC used in WSN and energy conscious

embedded applications.

3.6.2 Replay of Distributed Applications

The solutions in this category deal with replaying applications that have multiple

components that exchange messages among themselves. The primary concern is to

faithfully reproduce the global state from the local states and the message exchanges.

The primary systems in this category are liblog [29], Friday [44], and iTarget [45].

liblog is an application level library which intercepts calls to libc and logs their

results. Friday builds on top of liblog and provides a system that can track arbitrary

global invariants at the fine granularity of source symbols. iTarget decides on a replay

interface for the application so that its interactions with other software elements can

be faithfully recorded.

In contrast to the above line of work, we focus on tracing events of a single node.

Our work could be extended to replay of multiple nodes using the techniques described

above. Specifically, this implies tracking causality across nodes through message sends

and receives.

3.6.3 WSN Debugging

The works in this category can be sub-divided into synchronous and asynchronous

debugging. In synchronous debugging, the developer interacts with the application

while the application is running and tries to debug any problem as it arises [46, 47].

Minerva [48] connects a debug board to each node in the network. The debug boards

use the µCs JTAG port to enable stopping all nodes simultaneously to take snapshots

of memory and collecting traces of the node’s state while they are running.

In asynchronous debugging, information is collected at runtime and used for of-

fline debugging. Tardis falls into the class of asynchronous debugging. Within asyn-

chronous debugging, some techniques rely on a model checking approach [4] while

75

most rely on collecting runtime information and deducing anomalous behavior auto-

matically by mining patterns in the runtime information [7, 10, 11]. The record and

replay approaches for WSNs are most closely related to our current work.

Envirolog [9] allows a developer to specify events (e.g., function calls or variable

updates) at any layer in code to be captured during a record phase and then re-

produced during a replay phase. Tardis is di↵erent from Envirolog in three ways.

First, Envirolog cannot reproduce all race conditions. Envriolog uses timestamps

to reproduced the timing of events. Given the limitations of the TinyOS clock and

timer modules it is only able to deliver events with millisecond precision. This may

result in missed race condition bugs, because events are delivered thousands of cycles

di↵erently from when they were recorded. Tardis is able to reproduce all race condi-

tions because it delivers events with the precision of a single instruction by recording

the PC value and cycle count. Second, Envirolog does not explore recording a su�-

cient set of non-deterministic events necessary for complete and consistent replay at

the system level. It is not su�cient to record only sensor readings and radio send

and receive function calls. For example, if a node receives a command to change

its sleep cycle, that command must be reproduced during replay or the recorded log

may contain events that occur when the node is asleep during replay. Finally, Envi-

rolog does not explore compression of logged events. If Envirolog were setup to log

all non-determinism, then it would be comparable to the baseline case of where no

compression is used.

Aveksha [7] uses extra hardware to record traces from the µC JTAG port without

interfering with the execution of the node. The events that can be recorded are limited

by the bandwidth of the JTAG port, for example, function entry and exit points but

not complete control flows. Minerva [48] also uses the JTAG port to collect runtime

traces, which enables it to also be used for asynchronous debugging. TinyTracer [11]

records the control flow both within functions and across functions. FlashBox [16] is

similar in its goals to our work. It adds a compiler pass which instruments code to

record non-deterministic information, specifically the execution timeline of interrupts.

76

The approach requires modified hardware: an additional µC and flash are dedicated

to logging. The recorded information only allows a replay of the timeline of interrupts.

Prius [49] is a software solution for compressing control flow traces. It relies on o✏ine

training to learn what are the common control flow patterns and then compressing

runtime trace segments that match against these patterns. We could use it as part

of Tardis, provided we can identify a priori common patterns. Also, Prius’ reliance

on o✏ine training with representative traces raises the bar on its adoption. These

existing solutions do not provide comprehensive system-level replay, i.e., replay that

is able to reproduce both control flow at an instruction level and the state of memory

at any point in time. Using these techniques requires knowing in advance where a

bug is likely to manifest itself and be diagnosable.

3.7 Conclusion

Tardis is the first general-purpose software-only record and replay implementa-

tion for WSNs. Our technique supports a complete re-execution of the code, thereby

enabling the use of many other debugging tools during replay. We have designed

and implemented Tardis, which consists of a compiler plugin, a runtime compo-

nent, and a replay component. We have made seven key observations common to

sensor networks that enable record and replay. The current implementation targets

the MSP430 µC, however it is generalizable to other architectures by creating new

register definition files.

77

4. CONCLUSION

This thesis is guided by the principle:

Maintain as much detailed information as possible about the execution of

WSNs in deployment.

Two alternative approaches to achieving this goal have been explored, including hard-

ware and software-only. In Aveksha we demonstrated a hardware based approach that

uses o↵-the-self components to non-intrusively record software execution. In Tardis

we demonstrated a software based approach that provided system-level record and

replay by recording all sources of non-determinism in an e�cient manner.

REFERENCES

78

REFERENCES

[1] J. Eriksson, F. Osterlind, T. Voigt, N. Finne, S. Raza, N. Tsiftes, and
A. Dunkels, “Demo abstract: Accurate power profiling of sensornets with
the COOJA/MSPsim simulator,” in Mobile Adhoc and Sensor Systems, 2009.
MASS ’09. IEEE 6th International Conference on, Oct 2009, pp. 1060–1061.
[Online]. Available: http://dx.doi.org/10.1109/MOBHOC.2009.5337011

[2] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels, T. Voigt, R. Sauter,
and P. J. Marrón, “Towards interoperability testing for wireless sensor networks
with COOJA/MSPSim,” in Proceedings of the 6th European Conference on Wire-
less Sensor Networks, EWSN’09, 2009.

[3] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr, “E�cient memory
safety for tinyos,” in Proceedings of the 5th International Conference on Embedded
Networked Sensor Systems, ser. SenSys ’07. New York, NY, USA: ACM, 2007,
pp. 205–218. [Online]. Available: http://doi.acm.org/10.1145/1322263.1322283

[4] P. Li and J. Regehr, “T-check: Bug finding for sensor networks,” in Proceedings
of the 9th ACM/IEEE International Conference on Information Processing
in Sensor Networks, ser. IPSN ’10. New York, NY, USA: ACM, 2010, pp.
174–185. [Online]. Available: http://doi.acm.org/10.1145/1791212.1791234

[5] H. Thane and H. Hansson, “Using deterministic replay for debugging
of distributed real-time systems,” in Proceedings of the 12th Euromicro
Conference on Real-time Systems, ser. Euromicro-RTS’00. Washington, DC,
USA: IEEE Computer Society, 2000, pp. 265–272. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1947412.1947455

[6] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli, “The hitchhiker’s
guide to successful wireless sensor network deployments,” in Proceedings of
the 6th ACM conference on Embedded network sensor systems, ser. SenSys
’08. New York, NY, USA: ACM, 2008, pp. 43–56. [Online]. Available:
http://doi.acm.org/10.1145/1460412.1460418

[7] M. Tancreti, M. S. Hossain, S. Bagchi, and V. Raghunathan, “Aveksha: A
hardware-software approach for non-intrusive tracing and profiling of wireless
embedded systems,” in Proceedings of the 9th ACM Conference on Embedded
Networked Sensor Systems, ser. SenSys ’11. New York, NY, USA: ACM, 2011,
pp. 288–301. [Online]. Available: http://doi.acm.org/10.1145/2070942.2070972

[8] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson, “Replay debugging of
real-time systems using time machines,” in Proceedings of the 17th International
Symposium on Parallel and Distributed Processing, ser. IPDPS ’03. Washington,
DC, USA: IEEE Computer Society, 2003, pp. 288.2–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=838237.838487

http://dx.doi.org/10.1109/MOBHOC.2009.5337011
http://doi.acm.org/10.1145/1322263.1322283
http://doi.acm.org/10.1145/1791212.1791234
http://dl.acm.org/citation.cfm?id=1947412.1947455
http://doi.acm.org/10.1145/1460412.1460418
http://doi.acm.org/10.1145/2070942.2070972
http://dl.acm.org/citation.cfm?id=838237.838487

79

[9] L. Luo, T. He, G. Zhou, L. Gu, T. Abdelzaher, and J. Stankovic,
“Achieving repeatability of asynchronous events in wireless sensor networks
with envirolog,” in INFOCOM 2006. 25th IEEE International Conference
on Computer Communications. Proceedings, April 2006, pp. 1–14. [Online].
Available: http://dx.doi.org/10.1109/INFOCOM.2006.114

[10] M. Wang, Z. Li, F. Li, X. Feng, S. Bagchi, and Y.-H. Lu, “Dependence-based
multi-level tracing and replay for wireless sensor networks debugging,”
in Proceedings of the 2011 SIGPLAN/SIGBED Conference on Languages,
Compilers and Tools for Embedded Systems, ser. LCTES ’11. New
York, NY, USA: ACM, 2011, pp. 91–100. [Online]. Available: http:
//doi.acm.org/10.1145/1967677.1967691

[11] V. Sundaram, P. Eugster, and X. Zhang, “E�cient diagnostic tracing for wireless
sensor networks,” in Proceedings of the 8th ACM Conference on Embedded
Networked Sensor Systems, ser. SenSys ’10. New York, NY, USA: ACM, 2010,
pp. 169–182. [Online]. Available: http://doi.acm.org/10.1145/1869983.1870001

[12] T. Stathopoulos, D. Mclntire, and W. Kaiser, “The energy endoscope: Real-time
detailed energy accounting for wireless sensor nodes,” in Information Processing
in Sensor Networks, 2008. IPSN ’08. International Conference on, April 2008,
pp. 383–394.

[13] R. Fonseca, P. Dutta, P. Levis, and I. Stoica, “Quanto: Tracking energy in
networked embedded systems,” in Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’08. Berkeley,
CA, USA: USENIX Association, 2008, pp. 323–338. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855764

[14] “Green hills software inc,” http://www.ghs.com/.

[15] X. Jiang, P. Dutta, D. Culler, and I. Stoica, “Micro power meter for energy
monitoring of wireless sensor networks at scale,” in Proceedings of the 6th
International Conference on Information Processing in Sensor Networks, ser.
IPSN ’07. New York, NY, USA: ACM, 2007, pp. 186–195. [Online]. Available:
http://doi.acm.org/10.1145/1236360.1236386

[16] S. Choudhuri and T. Givargis, “Flashbox: A system for logging non-
deterministic events in deployed embedded systems,” in Proceedings of
the 2009 ACM Symposium on Applied Computing, ser. SAC ’09. New
York, NY, USA: ACM, 2009, pp. 1676–1682. [Online]. Available: http:
//doi.acm.org/10.1145/1529282.1529657

[17] “IAR Embedded Workbench for TI MSP430,” http://www.iar.com.

[18] “Monsoon inc. power monitor,” http://www.msoon.com/LabEquipment/
PowerMonitor/.

[19] P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler, “Energy metering for free:
Augmenting switching regulators for real-time monitoring,” in Proceedings of
the 7th International Conference on Information Processing in Sensor Networks,
ser. IPSN ’08. Washington, DC, USA: IEEE Computer Society, 2008, pp.
283–294. [Online]. Available: http://dx.doi.org/10.1109/IPSN.2008.58

http://dx.doi.org/10.1109/INFOCOM.2006.114
http://doi.acm.org/10.1145/1967677.1967691
http://doi.acm.org/10.1145/1967677.1967691
http://doi.acm.org/10.1145/1869983.1870001
http://dl.acm.org/citation.cfm?id=1855741.1855764
http://doi.acm.org/10.1145/1236360.1236386
http://doi.acm.org/10.1145/1529282.1529657
http://doi.acm.org/10.1145/1529282.1529657
http://www.msoon.com/LabEquipment/PowerMonitor/
http://www.msoon.com/LabEquipment/PowerMonitor/
http://dx.doi.org/10.1109/IPSN.2008.58

80

[20] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection tree
protocol,” in Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems, ser. SenSys ’09. New York, NY, USA: ACM, 2009, pp. 1–14.
[Online]. Available: http://doi.acm.org/10.1145/1644038.1644040

[21] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time
synchronization protocol,” in Proceedings of the 2Nd International Conference
on Embedded Networked Sensor Systems, ser. SenSys ’04. New York, NY,
USA: ACM, 2004, pp. 39–49. [Online]. Available: http://doi.acm.org/10.1145/
1031495.1031501

[22] M. Hossain, A. Alim Al Islam, M. Kulkarni, and V. Raghunathan, “µSETL: A
set based programming abstraction for wireless sensor networks,” in Information
Processing in Sensor Networks (IPSN), 2011 10th International Conference on,
April 2011, pp. 354–365.

[23] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible
operating system for tiny networked sensors,” in Local Computer Networks, 2004.
29th Annual IEEE International Conference on, Nov 2004, pp. 455–462.

[24] R. Huber, P. Sommer, and R. Wattenhofer, “Demo abstract: Debugging wireless
sensor network simulations with YETI and COOJA,” in IPSN, 2011.

[25] T. Goodspeed, “Goodfet,” http://goodfet.sourceforge.net, 2010.

[26] K. Shankar and R. Lysecky, “Control Focused Soft Error Detection for Embedded
Applications,” Embedded Systems Letters, IEEE, vol. 2, no. 4, pp. 127–130, 2010.

[27] H. A. Nguyen, A. Forster, D. Puccinelli, and S. Giordano, “Sensor node lifetime:
An experimental study,” in Pervasive Computing and Communications Work-
shops (PERCOM Workshops), 2011 IEEE International Conference on, March
2011, pp. 202–207.

[28] “TinyOS,” http://www.tinyos.net/.

[29] D. Geels, G. Altekar, S. Shenker, and I. Stoica, “Replay debugging
for distributed applications,” in Proceedings of the Annual Conference
on USENIX ’06 Annual Technical Conference, ser. ATEC ’06. Berkeley,
CA, USA: USENIX Association, 2006, pp. 27–27. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267359.1267386

[30] S. T. King, G. W. Dunlap, and P. M. Chen, “Debugging operating
systems with time-traveling virtual machines,” in Proceedings of ATEC
’05. USENIX Association, 2005, pp. 1–1. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1247360.1247361

[31] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL: Intermediate
language and tools for analysis and transformation of c programs,” in Proceed-
ings of the 11th International Conference on Compiler Construction, ser. CC’02.
Springer-Verlag, 2002, pp. 213–228.

[32] J. L. Hill and D. E. Culler, “Mica: A wireless platform for deeply embedded
networks,” IEEE Micro, vol. 22, no. 6, pp. 12–24, Nov. 2002.

http://doi.acm.org/10.1145/1644038.1644040
http://doi.acm.org/10.1145/1031495.1031501
http://doi.acm.org/10.1145/1031495.1031501
http://goodfet.sourceforge.net
http://www.tinyos.net/
http://dl.acm.org/citation.cfm?id=1267359.1267386
http://dl.acm.org/citation.cfm?id=1247360.1247361
http://dl.acm.org/citation.cfm?id=1247360.1247361

81

[33] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access
for wireless sensor networks,” in Proceedings of the 2Nd International
Conference on Embedded Networked Sensor Systems, ser. SenSys ’04.
New York, NY, USA: ACM, 2004, pp. 95–107. [Online]. Available:
http://doi.acm.org/10.1145/1031495.1031508

[34] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power wire-
less research,” in Information Processing in Sensor Networks, 2005. IPSN 2005.
Fourth International Symposium on, April 2005, pp. 364–369.

[35] “LZRW1,” http://www.ross.net/compression/lzrw1.html.

[36] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
Information Theory, IEEE Transactions on, vol. 23, no. 3, pp. 337–343, May
1977.

[37] R. Tan, G. Xing, J. Chen, W.-Z. Song, and R. Huang, “Quality-driven vol-
canic earthquake detection using wireless sensor networks,” in Real-Time Sys-
tems Symposium (RTSS), 2010 IEEE 31st, Nov 2010, pp. 271–280.

[38] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh, “Fidelity
and yield in a volcano monitoring sensor network,” in Proceedings of the
7th Symposium on Operating Systems Design and Implementation, ser. OSDI
’06. Berkeley, CA, USA: USENIX Association, 2006, pp. 381–396. [Online].
Available: http://dl.acm.org/citation.cfm?id=1298455.1298491

[39] C. M. Sadler and M. Martonosi, “Data compression algorithms for energy-
constrained devices in delay tolerant networks,” in Proceedings of the 4th
International Conference on Embedded Networked Sensor Systems, ser. SenSys
’06. New York, NY, USA: ACM, 2006, pp. 265–278. [Online]. Available:
http://doi.acm.org/10.1145/1182807.1182834

[40] V. Sundaram and P. Eugster, “Lightweight message tracing for debugging wire-
less sensor networks,” in Dependable Systems and Networks (DSN), 2013 43rd
Annual IEEE/IFIP International Conference on, June 2013, pp. 1–12.

[41] T. LeBlanc and J. Mellor-Crummey, “Debugging parallel programs with instant
replay,” Computers, IEEE Transactions on, vol. C-36, no. 4, pp. 471–482, April
1987.

[42] J. Huang, P. Liu, and C. Zhang, “Leap: Lightweight deterministic
multi-processor replay of concurrent java programs,” in Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE ’10. New York, NY, USA: ACM, 2010, pp.
207–216. [Online]. Available: http://doi.acm.org/10.1145/1882291.1882323

[43] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F. Kaashoek, and Z. Zhang,
“R2: An application-level kernel for record and replay,” in Proceedings of the
8th USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’08. Berkeley, CA, USA: USENIX Association, 2008, pp. 193–208.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1855741.1855755

[44] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica, “Friday: Global
comprehension for distributed replay,” in Proceedings of the 4th USENIX

http://doi.acm.org/10.1145/1031495.1031508
http://www.ross.net/compression/lzrw1.html
http://dl.acm.org/citation.cfm?id=1298455.1298491
http://doi.acm.org/10.1145/1182807.1182834
http://doi.acm.org/10.1145/1882291.1882323
http://dl.acm.org/citation.cfm?id=1855741.1855755

82

Conference on Networked Systems Design & Implementation, ser. NSDI’07.
Berkeley, CA, USA: USENIX Association, 2007, pp. 21–21. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1973430.1973451

[45] M. Wu, F. Long, X. Wang, Z. Xu, H. Lin, X. Liu, Z. Guo, H. Guo, L. Zhou,
and Z. Zhang, “Language-based replay via data flow cut,” in Proceedings of
the Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE ’10. New York, NY, USA: ACM, 2010, pp.
197–206. [Online]. Available: http://doi.acm.org/10.1145/1882291.1882322

[46] K. Whitehouse, G. Tolle, J. Taneja, C. Sharp, S. Kim, J. Jeong, J. Hui, P. Dutta,
and D. Culler, “Marionette: using rpc for interactive development and debugging
of wireless embedded networks,” in Information Processing in Sensor Networks,
2006. IPSN 2006. The Fifth International Conference on, 2006, pp. 416–423.

[47] J. Yang, M. L. So↵a, L. Selavo, and K. Whitehouse, “Clairvoyant:
A comprehensive source-level debugger for wireless sensor networks,” in
Proceedings of the 5th International Conference on Embedded Networked Sensor
Systems, ser. SenSys ’07. New York, NY, USA: ACM, 2007, pp. 189–203.
[Online]. Available: http://doi.acm.org/10.1145/1322263.1322282

[48] P. Sommer and B. Kusy, “Minerva: Distributed tracing and debugging in
wireless sensor networks,” in Proceedings of the 11th ACM Conference on
Embedded Networked Sensor Systems, ser. SenSys ’13. New York, NY, USA:
ACM, 2013, pp. 12:1–12:14. [Online]. Available: http://doi.acm.org/10.1145/
2517351.2517355

[49] V. Sundaram, P. Eugster, and X. Zhang, “Prius: Generic hybrid trace
compression for wireless sensor networks,” in Proceedings of the 10th
ACM Conference on Embedded Network Sensor Systems, ser. SenSys ’12.
New York, NY, USA: ACM, 2012, pp. 183–196. [Online]. Available:
http://doi.acm.org/10.1145/2426656.2426675

http://dl.acm.org/citation.cfm?id=1973430.1973451
http://doi.acm.org/10.1145/1882291.1882322
http://doi.acm.org/10.1145/1322263.1322282
http://doi.acm.org/10.1145/2517351.2517355
http://doi.acm.org/10.1145/2517351.2517355
http://doi.acm.org/10.1145/2426656.2426675

VITA

83

VITA

Matthew Tan Creti received both the BSE in Electrical Engineering and the BS

in Computer Science from the University of Iowa in 2005. Matthew enrolled as a MS

student in the School of Electrical and Computer Engineering at Purdue University in

Fall 2006. Under the supervision of Prof. Saurabh Bagchi, he received the MS degree

in Fall 2008. In Spring 2009, he enrolled in the PhD program in the School of Electrical

and Computer Engineering at Purdue University, with Dr. Bagchi as his advisor.

During his PhD studies he worked as a research assistant in Dr. Bagchi’s lab and as

an intern for Raytheon BBN Technologies in Cambridge, Massachusetts. His research

interests include wireless embedded systems and dependable distributed systems. He

is currently a co-founder and the Chief Technology O�cer of SensorHound, Inc.

	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	Introduction
	Motivation
	Outline
	Published Work

	Hardware Based Tracing and Profiling of Wireless Sensor Networks
	TDB Hardware and Firmware
	Energy Monitoring
	JTAG Background
	Hardware Architecture
	Firmware Architecture

	Using the Architecture for Tracing and Profiling
	Types of Triggers Available
	Breakpoint Mode
	Watchpoint Mode
	PC Polling Mode

	Evaluation
	Microbenchmarks
	Application Setup
	Watchpoints
	PC Polling

	Related Work

	Software Based System-Level Record and Replay of Wireless Sensor Networks
	Introduction
	Challenges of Record and Replay in WSNs
	Tardis Approach
	Contributions

	Design
	Overview
	Compile Time
	Runtime System
	Replay
	Debugging Workflow

	Encoding and Compression of Non-Deterministic Data
	Overview
	Non-determinism of Registers
	Polling loops
	Register Masking Pattern
	Sleep-wake Cycling and Interrupts
	Timer Registers
	State Registers
	Data Registers
	Log Format

	Evaluation
	Experimental Setup
	Runtime Overhead
	Static Overhead
	Comparison with gzip, S-LZW, and TinyTracer
	CTP Bug Case Study

	Discussion
	Related Work
	Replay of Single Nodes
	Replay of Distributed Applications
	WSN Debugging

	Conclusion

	Conclusion
	REFERENCES
	VITA

