AVEKSHA: A Hardware-Software Approach for Non-
intrusive Tracing and Profiling of Wireless Embedded
Systems

Matthew Tancreti, Mohammad Sajjad Hossain,
Saurabh Bagchi, Vijay Raghunathan

School of Electrical and Computer Engineering
Purdue University

Siide 1/23 PURDUE

UNIVERSITY

Problem Statement
* Debugging deployed Wireless Sensor Networks (WSN)

— Software: profilers affect timing and are OS
specific

— Hardware: bench debuggers not suitable for
WSN deployment

* How to perform tracing and profiling of software
— Non-intrusively
— With high spatial and temporal granularity
— Low energy
— Low cost
— Easy to integrate and deploy

* Tracing provides a sequence of events useful for debugging

* Profiling determines energy consumption and time per event

Siide 2/23 PURDUE

UNIVERSITY

Solution Approach: AVEKSHA

L = WDT
E1 |= USPIE@ (\
|= CHA
|= CKI
UBROO = 0x02;
UBR10 = 0x00;
UMCTLO = 0x00;
UCTLO &= ~SWRST;
e o __JIAG Debug
S 100100110111
while (1) 00 00 0 OO
v Board
volatile i;
(i= ; i--);
le (! 0));
P30UT &= ~0x01;
P30UT |= 0x01;
TXBUF® = RXBUFO;
} \ /

« AVEKSHA 1s a hardware/software approach

* Exploit on-chip debug module (OCDM)
— Comes free on most MCUs (also called EEM on MSP430)
— Exposed through JTAG interface
— Asynchronous with MCU operation

— Advanced features: complex triggers for breakpoints and
watchpoints, store state on trigger

Slide 3/23 PURDUE

UNIVERSITY

What We Built: The Telos Debug Board

Downstream USB Upstream USB TDB/Mote Interface
(to mote optional) FPGA MCU (to PC optional) 10 JTAG

‘‘‘‘‘‘‘

cpppettt

Telos mote TDB

* Connects to mote 10 and JTAG
« Has an MCU for initialization and configuration
» Has an FPGA for high speed polling of OCDM state

Siide 4/23 PURDUE

UNIVERSITY

Our Contributions
« Reverse engineered important JTAG protocol (MSP430)

— Common low-power sensor network MCU

— Enables profiling and tracing for this class of MCU chips
e Designed a HW/SW debugger suitable for deployed WSN

— Non-intrusive (does not alter software timing)
— OS and compiler agnostic

— Low power

— No significant hardware modification to mote

— Easy to deploy (does not need to be customized per application)

« Validated design through case studies
— Tracing and profiling in TinyOS and Contiki

— Found resource consuming bug in TinyOS low-power-listening radio stack

%_ Sice 523 PURDUE

UNIVERSITY

Presentation Outline

OCDM Background

Design
— Hardware

— Firmware

— Energy monitoring

— Low-power sleep

Case studies

mode

— Tracing TinyOS tasks and states

— A TinyOS bug

— Contiki Processes

— Profiling Functions

Conclusions and Future Research

i-l‘f%

Slide 6/23

PURDUE

UNIVERSITY

Background: Interfacing to the OCDM over JTAG

BITO1 2 3 4 5 6 7

» JTAG interface uses 4 pins Co Y —

— TDO data output o
— TDI data input bl A U B b
— TMS select mode TMSr s
— TCK clock TCKWM—“-“-!_L“—!_ —H—I_ —I_

« MSP430 OCDM responds to various commands sent over JTAG

« Used command sequences
— Set watchpoint and breakpoint #riggers
— Poll CPU status (e.g., if halted at a breakpoint)
— Poll the state-storage buffer (for information stored at watchpoint trigger)

— Poll the program counter (PC)

* These sequences map to 3 operation modes of the board:
watchpoint (WP), breakpoint (BP), and PC polling

Siide 7123 PURDUE

UNIVERSITY

WP/BP Mode: MSP430 OCDM Triggers

* Total of 8 triggers can be set on OCDM through JTAG

* Each trigger specifies a condition on
— Value present on data or address bus (MDB/MAB)
— Operation type: read, write, or instruction fetch (-R/-W/-F)

« Can combine individual triggers to create complex triggers

» 8 entry state-storage circular buffer stores MDB and MAB when trigger fired;
can be read out through JTAG

Code Triggers __—
0x4545: call 0x5550 —— 2 | MDB-F==0x12B0

data=0x12BO0

next
addr0x4545

State
Storage

« Key design challenge: read buffer at a fast rate to prevent overwritten data

Slide 8/23 PURDUE

UNIVERSITY

WP/BP Mode: Mapping Software Events to Triggers

« Triggers can be set for generic events e.g., function call and return

Event Condition # Triggers

Function call MDB-F==0x12B0
Function return | MDB-F==0x4130
Interrupt MAB-R>0xFFEQ
Interrupt return | MDB-F==0x1300
Peripheral read | 0x0010<MAB-R<0x01FF
User defined MDB-F==0x4404

e A" B e e e

* A nop instruction can be used by the programmer to specify
arbitrary trigger locations in code

provided to tracer

—

name value

if (ready()) { / /

NOP; // state_m ON
state m = ONj;

} else {
NOP; // state_m OFF
state_m = OFF;

}

Slide 9/23 PURDUE

UNIVERSITY

PC Polling Mode

OCDM allows continuous polling of program counter

* Provides information about program control flow

PC value can be mapped to a code block or function

— Need to know the start address of each code block or function

* Basic use of PC polling

flow a flow b

void f() {
if (x) {

a();
 eze ([
b();

}

Slide 10/23 PURDUE

UNIVERSITY

PC Polling: Extracting Function Start Addresses

* At boot-up, read program binary from mote through
JTAG and perform disassembly

— Discover location of function and interrupt start addresses

— Used to lookup what function a PC address belongs to

— Has the advantage of requiring no setup in advance

4078 <sig TIMERAQO VECTOR>:

ffe0 <InterruptVectors>:
403a
8536
8c24
8876
8460
40c4
4078
86aa

4078:
407a:
407c:
407e:
4080:
4084:
4086:
4088:
408a:

: bl

4094 <Msp430TimerCapComP__ 0 Event fired>:

0f
Oe
0d
Oc
bO
3c
3d
3e
3f

12
12
12
12
12
41
41
41
41

00
13

push rl5
push rl4
push rl3
push rl2
94 40 call #0x4094
rl2
rl3
pop rl4
pop rl5
f0 00 bic #240, 0(rl)

reti

Function start address table

0x4078
0x4094

4094: 1f 42 62 01 mov &0x0162, rl5
4098: 8f 10 swpb rl5
409a: 5f f£3 and.b #1, rl5
409c: 02 24 jz S+6
409e: 1f 42 72 01 mov &0x0172,rl5
40a2: 30 41 ret
Siide 11123 PURDUE

UNIVERSITY

Limitations of Watchpoint and PC Polling Modes

* Watchpoint mode
— State-storage buffer is 8 entries
— Each poll and read of state buffer takes 122 mote cycles
— Therefore, cannot exceed burst of 8 events in 976 mote cycles

— For example, suitable for monitoring task execution and state
transitions in TinyOS, but not function calls

* PC polling mode
— Only provides PC values, cannot get MDB and MAB values
— Each PC poll takes 7 mote cycles
— Suitable for task and function call granularity

e Cannot do watchpoint polling and PC polling at the same
time

L sido 1272 PURDUE

UNIVERSITY

Design Challenge: Speed of JTAG Polling

If JTAG is controlled by software

— MCU has to generate JTAG clock and process data
— For example, using another MSP430 running at SMHz would take the time shown

Mode Operation Software (us) | FPGA (us)
Breakpoint Test 43 3.8
Read Addr. 140 12.2
Resume 77 6.8
Total 260 22.8
Watchpoint ~ Test 200 18.3
Read Addr. 140 12.2
Total 340 30.5
PC Polling Read PC 48 1.6
Total 48 1.6

Datasheet specifies 10MHz JTAG clock maximum
— We find we can reliably clock at 12MHz (WP mode) and up to 24MHz (PC poll)
Using FPGA clocked at 48MHz we can achieve the maximum polling rate

— FPGA generates 24Mhz JTAG clock

Slide 13/23

PURDUE

UNIVERSITY

FPGA Pipeline for Function Profiling

* We use a pipelined architecture on the FPGA to improve
the throughput of OCDM to TDB communication

* For example, PC polling pipeline stages are

— Poll PC address

— Binary search for function pointer
— Filter block: does PC value indicate entry into a new function
— Output buffer interfaces to debug board MCU

(On TDB FPGA

I I I
[Function | | Output
| | |

1

Mote MCU
JTAG

* The pipelined architecture enables us to keep up with the
rate of the OCDM event stream

L Sido 1072 PURDUE

UNIVERSITY

Other Features of the Board

Energy monitoring
— Range of 18uA to 30mA

— Two amplifiers x10 and x105

3.3V il 8.3V

Rsenseff
3.74 i

: Mote DVCC

— Inexpensive 12bit ADC (on MSP430)

— Samples at 20kHz
Streaming data over USB

— Can also be used as a bench-top debugger

Can be powered through USB or battery

— Provides power to the mote

Low power, board enters sleep when mote 1s 1n sleep

%

Slide 15/23

PURDUE

UNIVERSITY

Case Study 1: Using Watchpoints to Trace TinyOS States

 Inserted nop instruction for
— Each state transition (indicated by an assignment to variables *m_state)

— Each task handler
g 68
& 51 \
—~ 34
% 17
03 6 12 18 24 30
Time(ms)

Application Layer
|

Send.sendDone
Timer.fired |
sendMessage | 'T

\l adio Layer
CC2420ControlP m statelllllll
CC2420TransmitP_m_stateLH

CC2420ReceiveP__m_statcl N .

* Gives visibility of fine grained events

Slide 16/23 PURDUE

UNIVERSITY

PowerCycleP Re-post Bug

e Discovered a bug in TinyOS when tracing tasks
 PowerCycleP startRadio re-posts itself

Power (mWw)
O = WU,
~ &= 0

0 39 78 117 156
Time (ms)
AlarmToTimerC__0_fired| I I I
ArbiterP__0__grantedTask | |
4215 1 3143

CC2420CsmaP__SplitControlStateiliil 1 1
1 2S STARTING

3S_STOPPED 4S STOPPING
5S_TRANSMITTING
CC2420CsmaP__sendDone_task |1 I [[LEECREE TERELEE FORIE TEEE 101 11
CC2420CsmaP__startDone _task | I
CC2420CsmaP__stopDone_task
CC2420ReceiveP__receiveDone_task I
CC2420SpiP__grant | I I
CtpRoutingEngineP__0__sendBeaconTask|
CtpRoutingEngineP__0__updateRouteTaskl|
DefaultLplP_resend | Il | (1 1 Y B I (.
DefaultLplP__send |
DefaultLplP__startRadio |
PowerCycleP__getCca | |
PowerCycleP__startRadio @lllll-lll-llll-llllIIII-II 1]

PowerCycleP__stopRadio |

Slide 17/23 PURDUE

UNIVERSITY

PowerCycleP Bug Explained

startRadio task re-posts if SubControl start() != SUCCESS
When radio 1s already started SubControl start() = EALREADY

static inline void PowerCycleP__startRadio__runTask (void) {
if (PowerCycleP__SubControl__start () != SUCCESS) {
PowerCycleP__startRadio__postTask();
}
}

Re-post could be permanent with following hypothetical code

event void RadioControl.startDone(error_t err) {
sendMessage() ;
// Schedule the timer to fire while
// PowerCycleP__startRadio is spinning
call Time.startOneShot (100);
}
event void Timer.fired() {
call LowPowerListening.setLocalWakeupInterval (0);

}

Simple fix
static inline void PowerCycleP__startRadio__runTask (void) {
if (PowerCycleP__SubControl__start () != SUCCESS
&& PowerCycleP__SubControl__start() != EALREADY) ({

PowerCycleP__startRadio__postTask();
}
}

Now patched in TinyOS repository (bug tracker issue 51)

Slide 18/23

PURDUE

UNIVERSITY

With Bug Fixed

Power (mWw)

0 38 76 114 152
Time (ms)
AlarmToTimerC__0_ fired| I I I

ArbiterP__0__grantedTask |
4215 1

CC2420CsmaP__SplitControlStatcilil
1 2 S _STARTING

35 _STOPPED 45 _STOPPING
S S TRANSMITTING
CC2420CsmaP__sendDone_task [TEECECCECEEEEEREREEEEREEE PTRREREREEEETEREEEET 1
CC2420CsmaP__startDone task |
CC2420CsmaP__stopDone_task
CC2420ReceiveP__receiveDone_task IR
CC2420SpiP__grant | I
CtpRoutingEngineP__0__sendBeaconTask |
CtpRoutingEngineP__0__updateRouteTask |
DefaultLplP__resend FEETEEREEEEE T rere ee e e e e et e e e |
DefaultLplP__send |
DefaultLplP__startRadio |
PowerCycleP__getCca |

PowerCycleP__startRadio §
S —

DefaultLplP__stopRadio

-

Slide 19/23

PURDUE

UNIVERSITY

Case Study 2: Monitoring Contiki Processes

» LightTracker application [IPSN’11]
* Set nop 1nstructions for Contiki processes

* Verifies OS agnostic nature of our architecture
— Required no change of TDB switching from TinyOS to Contiki

application
,;70-
56
£ 0
v 284
ool
12 14 16 Timel(g) 20 22

PROCESS _BEGIN |
PROCESS _THREAD |
PROCESS_WAIT_EVENT_UNTIL
init |
read_light
send
timedout

Slide 20/23 PURDUE

UNIVERSITY

Case Study 3: Profiling with PC Polling

* PC polling down to granularity of 7 mote cycles
» Usually enough to catch every function transition
* Can be combined with call graph information to generate

a profile
is_synced t]
fixsfsi i
fomul_parts '
unpack_f] f]
mulsf3 ¥ = = . »
pack_f ' r
floatsisf % 3
local2Global . TR
0 52 104 156 208 260
Time (us)

Slide 21/23 PURDUE

UNIVERSITY

Conclusions

* We proposed a hardware software approach for tracing and
profiling of sensor network software

* Designed, implemented, and tested the Telos Debug Board
— Non-intrusive (does not change timing)
— OS/compiler agnostic
— No significant hardware modification to mote

— Easy to deploy (does not need a priori knowledge of application)
* Future design improvements

— Reduce power in sleep mode (fast wakeup)
— Improve energy monitoring accuracy
— Add additional flash storage

e Future research directions
— Debugging a deployed network

— Applications such as record-and-replay

L sido 222 PURDUE

UNIVERSITY

Thank You

Matthew Tancreti (mtancret@purdue.edu)

Slide 23/23 PURDUE

UNIVERSITY

