
R E S E A R C H P O S T E R P R E S EN T AT IO N D E SIG N © 2 0 1 1

w w w . Post erPresent at i ons. com

TARDIS: Software-Only System-Level Record and Replay in Wireless Sensor Networks

• Despite best efforts, software defects are often encountered
only after deployment of a Wireless Sensor Network (WSN)

• Prior work uses record and replay (the ability to reproduce an
execution) to aid in debugging

• For example, TinyTracer can replay control flow and Envirolog
can replay select variables and function calls

• TARDIS poses the question: is it feasible in software to record
and replay every instruction and state of memory in a WSN?

• Challenges:
• Small persistent storage for logging (1MB TelosB)
• Small RAM for buffering (10KB TelosB)
• Low CPU power (4MHz TelosB)

Problem	 Statement

Solution	 Approach

Recording	 All	Non-determinism Compression	 (cont.) Resource	 Consumption	 (cont.)

Reference

M. Tancreti, V. Sundaram, S. Bagchi, P. Eugster, “TARDIS:
Software-Only System-Level Record and Replay in Wireless Sensor
Networks,” in Proceedings of the 14th ACM/IEEE Conference on
Information Processing in Sensor Networks, IPSN ’15, ACM, 2015.

• Record only the non-determinism present on µC
• Values read from peripheral registers
• Timing of interrupts

• Classify sources of non-determinism and compress in separate
streams

• 3 streams: state/timer register, generic register,
interrupt timings

• Low resource domain-specific compression
techniques for each stream

• Buffer stream and write to flash during downtime
• Reconstruct events by feeding streams into emulator

Purdue	University

Matthew	Tancreti,	 Vinaitheerthan Sundaram,	Saurabh	Bagchi,	Patrick	Eugster

TARDIS	Architecture

Contributions

Case	 Study:	CTP	 Bug

Compression	 of	Non-determinism

Acknowledgements

This work was supported in part by NSF grants ECCS-0925851 and
CNS-0834529. The views expressed represent those of the authors
and do not necessarily reflect the views of the sponsoring agency.

1. Reads from peripheral registers
• Peripheral registers contain values from external

sources, e.g., ADC, I2C data, or timer
• Reads are typically addressed statically
• TARDIS-CIL identifies reads at compile time and

adds code to store value
2. Timing of Interrupts

• Hardware instruction counter not available, so we
use software technique

• Loop count and return address uniquely identifies
when interrupt occurred

• Every loop is instrumented with loop count
increment instruction

Resource	 Consumption

Application
code

OS
code

Instrumented
source

TARDIS
Logger

TARDIS CIL (S2S)

Instrumentation
mapping

Binary
firmware

1. Compile-Time 2. Run-Time

3. Off-line Replay

Binary
firmware

RAM

Uncompressed
buffers

Compressed
buffers

Flash

Log

TARDIS Replay
Emulator Binary

firmware

Log Instrumentation
mapping

GCC

State/Timer Stream:
if type == state then write
 0b111<6-bit index><8-bit run_length><X-bit value>
if type == timer and delta < 4 then write 0b0<2-bit delta>
if type == timer and delta < 64 then write 0b10<6-bit delta>
if type == timer and delta >= 64 then write 0b110<16-bit delta>

Generic Stream (LZRW-T):
if no matching sequence found then 0b0<8-bit value>
if matching sequence found then 0b1<8-bit offset><8-bit length>

Interrupt Stream:
if loop_count == 0 then write 0b0<4-bit vector>
if loop_count < 256 then write
 0b10<4-bit vector><16-bit return_address><8-bit loop_count>
if loop_count >= 256 then write
 0b11<4-bit vector><16-bit return_address><16-bit loop_count>

0"
10"
20"
30"
40"
50"
60"
70"
80"

MHO" MHO"
Wakeup"
="64ms"

MHO"
Wakeup"
="512ms"

MHO"
Network"

MHO"
Network"
Wakeup"
="64ms"

MHO"
Network"
Wakeup"
="512ms"

EM" Collect"

Av
er
ag
e'
Po

w
er
'(m

W
)'

TARDIS"
Unmodified"

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"

MHO" MHO"
Wakeup"
="64ms"

MHO"
Wakeup"
="512ms"

MHO"
Network"

MHO"
Network"
Wakeup"
="64ms"

MHO"
Network"
Wakeup"
="512ms"

EM" Collect"

Du
ty
%C
yc
le
%

TARDIS"
Unmodified"

0.0#
2.0#
4.0#
6.0#
8.0#
10.0#
12.0#
14.0#
16.0#

MHO# MHO#
Wakeup#
=#64ms#

MHO#
Wakeup#
=#512ms#

MHO#
Network#

MHO#
Network#
Wakeup#
=#64ms#

MHO#
Network#
Wakeup#
=#512ms#

EM# Collect#

Si
ze
%in
%F
la
sh
%(K

B/
s)
% TARDIS# Uncompressed#

Interrupts

State registers:

Data registers:

Baseline: Logging only
non-deterministic registers
Log growth = 12.9 KB/s

12.8%

11.2% Timer registers:

6.3%

69.7%

Interrupts

State registers:

Data registers:

TARDIS:
Log growth = 1.5 KB/s
(88.4% reduction)

51.3%

23.4% Timer registers:

17.5%

7.8%

0"

10"

20"

30"

40"

50"

MHO" EM" Collect"

Pr
og
ra
m
'R
O
M
'(K

B)
'

TARDIS"
Unmodified"

0"

2"

4"

6"

8"

10"

MHO" EM" Collect"

Pr
og
ra
m
'R
AM

'(K
B)
'

TARDIS"
Unmodified"

0.0#

0.5#

1.0#

1.5#

2.0#

2.5#

3.0#

3.5#

MHO# MHO#
Wakeup#=#
64ms#

MHO#
Wakeup#=#
512ms#

MHO#
Network#

MHO#
Network#
Wakeup#=#
64ms#

MHO#
Network#
Wakeup#=#
512ms#

EM# Collect#

Si
ze
%in
%F
la
sh
%(K

B/
s)
% interrupts#

Amer#

data#

state#

• Instruction and memory accurate record and replay for WSNs
• Classification of sources of non-determinism on µC and use of

domain-specific compression
• Evaluation of resource costs for record and replay of WSN

applications
• Demonstrate diagnosis of new defect in CTP

• Source-to-source compiler identifies and instruments sources of
non-determinism

• Buffer log in RAM before writing to Flash
• Emulator consults log and instrumentation mapping

• Non-determinism of registers
• Not all peripheral registers are non-deterministic
• In some registers only particular bits non-

deterministic
• For example, ADC12CTL1 is deterministic except for

single busy flag bit
• Design: only record non-deterministic bits

• Polling loops
while (IFG & TXFLG);

• Example, interrupt register checked until
transmitting flag is cleared

• Assume polling loops are eventually exited
• Therefore, no need to record read from IFG register

• Register masking pattern
not_done_transmitting = IFG & TXFLG;
• Example, IFG masked except for single flag bit
• Masked bits have no relevance to execution of code
• Design: ignore masked bits

• Sleep-wake cycling and interrupts
• WSNs depend on sleep-wake cycling for energy

conservation
• Interrupts normally require recording 16-bit return

address and 16-bit loop counter
• Sleep mode can only exit with an interrupt
• Design: interrupts that exit sleep mode do not need

timing logged
• Timer registers

• Delta between timer reads or capture/compare
register after interrupt is usually small

• Design: record timer delta

• State registers
• State registers report a state, for example, interrupt

flags indicating pending interrupt
• Consecutive reads often repeat value
• Design: encode state registers with RLE

• Data registers
• For example, I2C data
• Design: compression using light-weight generic

compression, LZRW-T

Log	 Format

Resource	 Consumption	 (cont.)

Node
Radio connectivity

0

2

3

1 4 5

6

7

8

Transient link

0"

2"

4"

6"

8"

10"

12"

14"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100"110"

Lo
gg
in
g&
Ra

te
&(K

B/
s)
&

Time&(s)&

Node"4"

Node"5"

0"
200"
400"
600"
800"
1000"
1200"
1400"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90"100"110"120"

ET
X$

Time(s)

Node"4"

Node"5"

• When partition forms for longer than 30 seconds, network takes
30 minutes to heal

• Goes against CTP principal of quick recovery from broken links
• ETX value continues to rise because of routing loops in

partitioned nodes
• Caused by nodes on non-partitioned side sending beacons at

lowest rate (they think network is healthy)
• Logging rate is low in healthy network but raises due to high

traffic cased by routing loops

