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TARDIS: Software-Only System-Level Record and Replay in Wireless Sensor Networks

• Despite best efforts, software defects are often encountered 
only after deployment of a Wireless Sensor Network (WSN)

• Prior work uses record and replay (the ability to reproduce an 
execution) to aid in debugging

• For example, TinyTracer can replay control flow and Envirolog
can replay select variables and function calls 

• TARDIS poses the question: is it feasible in software to record 
and replay every instruction and state of memory in a WSN?

• Challenges:
• Small persistent storage for logging (1MB TelosB)
• Small RAM for buffering (10KB TelosB)
• Low CPU power (4MHz TelosB)
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• Record only the non-determinism present on µC
• Values read from peripheral registers
• Timing of interrupts

• Classify sources of non-determinism and compress in separate 
streams

• 3 streams: state/timer register, generic register, 
interrupt timings

• Low resource domain-specific compression 
techniques for each stream

• Buffer stream and write to flash during downtime
• Reconstruct events by feeding streams into emulator
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1. Reads from peripheral registers
• Peripheral registers contain values from external 

sources, e.g., ADC, I2C data, or timer
• Reads are typically addressed statically
• TARDIS-CIL identifies reads at compile time and 

adds code to store value
2. Timing of Interrupts

• Hardware instruction counter not available, so we 
use software technique

• Loop count and return address uniquely identifies 
when interrupt occurred

• Every loop is instrumented with loop count 
increment instruction
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State/Timer Stream: 
if type == state then write 
   0b111<6-bit index><8-bit run_length><X-bit value> 
if type == timer and delta < 4 then write 0b0<2-bit delta> 
if type == timer and delta < 64 then write 0b10<6-bit delta> 
if type == timer and delta >= 64 then write 0b110<16-bit delta> 
 
Generic Stream (LZRW-T): 
if no matching sequence found then 0b0<8-bit value> 
if matching sequence found then 0b1<8-bit offset><8-bit length> 
 
Interrupt Stream: 
if loop_count == 0 then write 0b0<4-bit vector> 
if loop_count < 256 then write 
   0b10<4-bit vector><16-bit return_address><8-bit loop_count> 
if loop_count >= 256 then write 
   0b11<4-bit vector><16-bit return_address><16-bit loop_count> 
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• Instruction and memory accurate record and replay for WSNs
• Classification of sources of non-determinism on µC and use of 

domain-specific compression
• Evaluation of resource costs for record and replay of WSN 

applications
• Demonstrate diagnosis of new defect in CTP

• Source-to-source compiler identifies and instruments sources of 
non-determinism

• Buffer log in RAM before writing to Flash
• Emulator consults log and instrumentation mapping

• Non-determinism of registers
• Not all peripheral registers are non-deterministic
• In some registers only particular bits non-

deterministic
• For example, ADC12CTL1 is deterministic except for 

single busy flag bit
• Design: only record non-deterministic bits

• Polling loops
while (IFG & TXFLG);

• Example, interrupt register checked until 
transmitting flag is cleared 

• Assume polling loops are eventually exited
• Therefore, no need to record read from IFG register

• Register masking pattern
not_done_transmitting = IFG & TXFLG;
• Example, IFG masked except for single flag bit
• Masked bits have no relevance to execution of code
• Design: ignore masked bits

• Sleep-wake cycling and interrupts
• WSNs depend on sleep-wake cycling for energy 

conservation
• Interrupts normally require recording 16-bit return 

address and 16-bit loop counter
• Sleep mode can only exit with an interrupt
• Design: interrupts that exit sleep mode do not need 

timing logged
• Timer registers

• Delta between timer reads or capture/compare 
register after interrupt is usually small

• Design: record timer delta

• State registers
• State registers report a state, for example, interrupt 

flags indicating pending interrupt
• Consecutive reads often repeat value
• Design: encode state registers with RLE

• Data registers
• For example, I2C data
• Design: compression using light-weight generic 

compression, LZRW-T
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• When partition forms for longer than 30 seconds, network takes 
30 minutes to heal

• Goes against CTP principal of quick recovery from broken links
• ETX value continues to rise because of routing loops in 

partitioned nodes
• Caused by nodes on non-partitioned side sending beacons at 

lowest rate (they think network is healthy)
• Logging rate is low in healthy network but raises due to high 

traffic cased by routing loops


