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Abstract
It is important to get an idea of the events occurring in

an embedded wireless node when it is deployed in the field,
away from the convenience of an interactive debugger. Such
visibility can be useful for post-deployment testing, replay-
based debugging, and for performance and energy profiling
of various software components. Prior software-based solu-
tions to address this problem have incurred high execution
overhead and intrusiveness. The intrusiveness changes the
intrinsic timing behavior of the application, thereby reduc-
ing the fidelity of the collected profile. Prior hardware-based
solutions have involved the use of dedicated ASICs or other
tightly coupled changes to the embedded node’s processor,
which significantly limits their applicability.

In this paper, we present AVEKSHA, a hardware-software
approach for achieving the above goals in a non-intrusive
manner. Our approach is based on the key insight that most
embedded processors have an on-chip debug module (which
has traditionally been used for interactive debugging) that
provides significant visibility into the internal state of the
processor. We design a debug board that interfaces with
the on-chip debug module of an embedded node’s proces-
sor through the JTAG port and provides three modes of
event logging and tracing: breakpoint, watchpoint, and pro-
gram counter polling. Using expressive triggers that the on-
chip debug module supports, AVEKSHA can watch for, and
record, a variety of programmable events of interest. A key
feature of AVEKSHA is that the target processor does not
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have to be stopped during event logging (in the last two of the
three modes), subject to a limit on the rate at which logged
events occur. AVEKSHA also performs power monitoring of
the embedded wireless node and, importantly, enables power
consumption data to be correlated to events of interest.

AVEKSHA is an operating system-agnostic solution. We
demonstrate its functionality and performance using three
applications running on Telos motes; two in TinyOS and one
in Contiki. We show that AVEKSHA can trace tasks and other
generic events at the function and task-level granularity. We
also describe how we used AVEKSHA to find a subtle bug in
the TinyOS low power listening protocol.
Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debug-
ging—Debugging Aids, Tracing
General Terms

Design, Measurement
Keywords

Wireless Sensor Network, Debugging, Tracing, JTAG
1 Introduction

It is often important to get an idea of the events occur-
ring in an embedded wireless node when it is deployed in
the field in a remote location, away from the convenience of
an interactive debugger. Such visibility can be useful for var-
ious purposes — for debugging any problem a posteriori in
the lab, by recreating the exact sequence of events that the
node experienced in the deployment (this approach is called
“record and replay-based debugging”) [1, 2]; for profiling
the operation of a node for the performance of its various
software components and the energy consumed by different
hardware and software components on the node [3, 4, 5]. As
an example of the latter use case, a system owner may be
interested in figuring out which software component is being
invoked most often and which software component is con-
suming most energy per invocation. It is often not possible
to do these determinations in a lab setting because the events
that the node experiences in the deployment cannot be recre-
ated in the lab and the events (and even their sequence) can
have a bearing on these questions.

We would like to have visibility at a fine granularity - both
spatially and temporally. Spatially fine visibility implies that
it should be possible to trace individual events of interest as
opposed to only bursts of events (clearly, tracing every event



is likely to be prohibitive) and it should be possible to trace
performance and energy at fine code regions, such as a func-
tion or a task (using TinyOS terminology). This is desirable
because the fine region of code can then be debugged if it is
determined through performance profiling that this region is
causing a performance bottleneck, through energy profiling
that it is consuming unexpectedly large amounts of energy,
or through record and replay that it is the source of a bug.
Temporally fine visibility implies that it should be possible
to do the tracing with a high sampling frequency. Clearly, the
two dimensions are not independent. In order to trace small
regions of code in a loop, it is necessary to be able to trace at
a fine temporal granularity.

While the problem motivation laid out above has been
clear to researchers for quite some time [6], it has proved
very difficult to provide a solution for low-cost embedded
wireless nodes that can operate at a large deployed scale. The
first line of attack has been to provide pure software solutions
[7, 1, 2]. Such solutions have perturbed the application too
much to be useful for many of the use cases indicated above.
For one, they change the timing behavior enough that some
bugs get suppressed. Else, they cause such a large slowdown
in the application execution that it is not possible to employ
them in a deployed setting. To get around this problem, a
recent software solution [2] has focused on a specific kind of
tracing (control flow tracing) and intelligent static analysis
and runtime trace collection, compression and storage. Thus,
it addresses one of the above usage scenarios. The second
line of research has developed hardware solutions for subsets
of the usage scenarios laid out above. For example, [5] has
developed a dedicated integrated circuit, implemented using
an FPGA, that is tightly integrated with the host processor
and its peripherals and can measure energy drawn accurately
at millisecond resolution. Quanto [4] is a solution that de-
emphasizes sophisticated hardware design. Instead, it mea-
sures energy at the node level, uses indication from device
drivers about changes in power state, and performs causality
tracking to pin down energy usage due to individual activi-
ties. Thus, Quanto is a hardware-software solution, and like
all prior solutions that have a software part, is OS-specific
(in this case, TinyOS).

A high-end hardware solution for tracing the execution
on an embedded processor is provided by solutions such as
Green Hills Software’s SuperTrace probe and TimeMachine
tools [8]. These solutions can collect fine-grained trace data
from nearly all 32-bit and 64-bit processors, even those with-
out integrated trace hardware. Unfortunately, such solutions
are very expensive in dollar terms (e.g., the SuperTrace probe
and TimeMachine tools together cost almost $15,000) and
are not available for the low-end embedded processors that
are commonly used in embedded wireless nodes.

In summary, our problem statement is the following: How
to perform non-intrusive tracing of execution at a high spa-
tial and temporal granularity suitable for an embedded wire-
less node, i.e., in a low-cost manner and one that can be de-
ployed at a large scale?

In this paper, we present AVEKSHA, a system that

achieves this goal1. AVEKSHA is based on an insight that
most processors, including low-cost embedded processors,
offer visibility into their internal workings through an On-
Chip Debug Module (OCDM), whose signals are exposed
through a standard JTAG interface. This interface has been
used by embedded system engineers primarily for interac-
tive debugging, such as single stepping, showing values of
registers, etc. We show how this visibility, together with the
fact that most OCDMs provide a general-purpose method of
setting triggers, can be leveraged in AVEKSHA to perform
automated tracing in a deployed setting.

We develop a debug board formed of standardized com-
ponents – a microcontroller unit (MCU), which in our
case happens to be the same as the application processor,
MSP430F1611 from Texas Instruments, and an Actel FPGA,
both of which interact with the OCDM on the application
processor over the JTAG interface. We refer to our debug
board as the Telos Debug Board (TDB) because it is intended
to be used with the Telos wireless sensor node (however,
our solution is not restricted to the Telos and can easily be
adapted to other embedded platforms based on the MSP430
microcontroller, and with some effort to other embedded
platforms). The MSP430 OCDM (also referred to by the mi-
crocontroller datasheets as the Enhanced Emulation Module
or EEM) allows AVEKSHA unprecedented visibility into the
state of the application processor. Further, the OCDM has a
small circular buffer where events of interest can be stored
and subsequently drained by the FPGA on the TDB. The
triggering mechanism of the OCDM is very flexible and is
therefore attractive for AVEKSHA. For example, the OCDM
can be triggered to indicate when the application processor
has accessed a certain memory region or a certain peripheral
device, such as a sensor. We find that the triggering mecha-
nism can be combined with thoughtful design to trace all the
events of interest for our three usage scenarios – performance
profiling, energy profiling, and record-and-replay.

One challenge that we face, and resolve partially, is the
need to do real-time tracing, i.e., without interrupting the ap-
plication processor. AVEKSHA is able to achieve this when
the rate of events that it has to trace does not exceed some
bound, which depends on the mode of tracing it uses. AVEK-
SHA operates in one of three modes: breakpoint, watchpoint,
and program counter (PC) polling. Breakpoint is a baseline
and we use it for demonstrating some functionality of the
TDB. It is intrusive and, therefore, does not meet our solu-
tion requirements. The watchpoint mode has AVEKSHA set
triggers, where each trigger unambiguously maps to an event
of interest (such as when a sensor is read). When a trigger
fires, the application processor is not stopped, but the state is
dumped to a buffer on the OCDM, which is then emptied out
by AVEKSHA. This is a rate-limited operation and if events
of interest happen with a high enough frequency, the buffer
overflows and AVEKSHA misses some events of interest. In
the PC polling mode, the TDB tracks the program counter
values of the application processor without interrupting it.
Then, it processes the PC values to determine events of inter-
est, such as when control flow has entered a particular func-

1AVEKSHA is a Sanskrit word that means “to monitor”.
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Figure 1. The Telos Debug Board (TDB) with a Telos Rev
B mote underneath, and the underside of the TDB (right).

tion. These three modes reveal different tradeoffs in terms
of intrusiveness, the flexibility in defining which events to
collect, and the rate at which collection can be done.

We make the following claims to novelty and practical
feasibility from AVEKSHA:

1. We present the first technique for non-intrusive tracing
of a wide variety of events, including arbitrary user-
defined events, in embedded wireless nodes. We moti-
vate the events of interest from three well-accepted us-
age scenarios.

2. Our tracing technique is agnostic to the operating sys-
tem, compiler infrastructure, or language in which the
application is implemented.

3. Our hardware is built using off-the-shelf components
and requires little effort in integrating with the appli-
cation board, which is modified only very slightly for
enabling the tracing.

4. Our solution is suitable for deployment at a large scale
because it is low cost, can operate on battery power, and
extracts program information directly from the applica-
tion processor.

Our solution also has some limitations. We provide a de-
tailed discussion of these, along with thoughts on how to
mitigate them, in Section 5. In brief, the TDB is a relative
energy hog itself, drawing about the same power as the ap-
plication processor board. Its ability to keep pace with events
is exceeded if a burst of 8 events happens within a window
smaller than 976 clock cycles (in the watchpoint mode) or
events happen more frequently than 7 clock cycles (in the
PC polling mode).

The roadmap for the rest of the paper is as follows. In
Section 2, we describe the hardware of the TDB and the
firmware that goes on it. In Section 3, we show how the TDB
can be used for profiling. In Section 4, we present the exper-
imental setup and results with two TinyOS and one Contiki
application. In Section 5, we discuss feasible extensions of
AVEKSHA. In Section 6, we review related work and Section
7 concludes the paper.

2 TDB Hardware and Firmware
In this section, we present the design of the Telos Debug

Board (TDB), which provides execution tracing and energy
monitoring of the Telos Rev B mote. An MCU and an FPGA
provide the programmability of the TDB.
Terminology: We lay out some terminology that we will
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Figure 2. Simplified schematic of the energy monitoring
circuit of the TDB.
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Figure 3. Simplified schematic of powering the mote
through the TDB. The mote’s battery should not be con-
nected.

use through the rest of the paper. We wish to monitor the
execution of the application processor that is part of an ap-
plication processor board. The application processor board,
which we sometimes also refer to as the mote, has various
peripherals such as sensors and the JTAG interface in addi-
tion to the application processor. We refer to the hardware
board that is a part of our solution as the Telos Debug Board,
while the entire hardware-firmware that forms our solution
is called AVEKSHA.

Figure 1 shows a photograph of the TDB with a Telos
mote attached underneath. The MCU, FPGA, and multi-
ple USB ports on the TDB are highlighted. The figure also
shows the JTAG and IO connections between the TDB and
the mote. The TDB is designed so that it can be deployed in
the field, connected to a mote. In this mode of operation, a
battery powers the TDB, which in turn provides power to the
mote. As a secondary mode of operation, the TDB can also
stream logged events directly to a USB host such as a laptop.
This is useful for in-lab debugging.
2.1 Energy Monitoring

Energy is a key concern for sensor networks, because
motes must operate unattended on battery power for long
periods of time. When optimizing an application to reduce
energy consumption, it can be useful to observe how much
energy is consumed in different states. The TDB can mea-
sure and log the power consumed by the mote, which can
then be correlated to different operational states of the mote.

The standard method for measuring energy consumption
is by monitoring the voltage over a sense resistor. The sense
resistor (Rsense) is placed in series with the load being mea-
sured. The voltage (V ) across Rsense is sampled and the load’s
current draw is calculated by I =V/Rsense. The supply volt-
age (Vsupply) can then be used to find the power being drawn
by the load with P = I ∗Vsupply. The power samples can then
be integrated over time to determine energy consumption.

The challenges presented in monitoring energy in sensor



networks is the wide dynamic range of power draw of a mote
and the rapid changes in power draw. For example, a mote
may draw only tens of µA in sleep mode and as much as
30mA when fully active. It may not be sufficient to ignore
the small power draw when the mote is in low power mode,
because typical sensor network applications spend long pe-
riods of time in the low power state while only waking for
short periods of time. Further, the change in the current draw
when the mote transitions from one state to another is rapid.

To meet these challenges, we use two instrumentation am-
plifiers to amplify the voltage across Rsense by a gain of 10
and 105, as shown in Figure 2. Because Rsense is placed on
the high side, the amplifiers need to be supplied with a volt-
age larger than 3.3V, in this case 5V. The output of these am-
plifiers is fed into an RC low-pass filter to avoid interference
from high frequency components. The cut off frequency is
about 16kHz. This value is justified in the design of the
SPOT energy meter, based on an observed significant drop
in energy content above this frequency [3]. Another pair of
amplifiers with unity gain is used to protect the ADCs which
cannot tolerate more than 3.3V. Two ADC channels of the
MCU on the TDB sample the x10 and x105 lines at 20KHz.
The ADCs are 12-bit and sample against a reference volt-
age of 2.5V. This gives ADCx10 a resolution of 61µV across
Rsense which is equivalent to 16.3µA of current draw, and a
maximum reading of 250mV or 66.8mA, which is more than
the mote’s maximum current draw of 30mA. The ADCx105
gives a resolution of 5.81µV across Rsense which is equiva-
lent to 1.55µA of current draw, and a maximum reading of
23.8mV or 6.37mA.

As shown in Figure 3, Rsense is placed between the TDB’s
3.3V supply and the mote’s DVCC line, while the ground
lines of the mote and the TDB are shared. This configuration
is known as high side sensing. One advantage of high side
sensing is that the ground plane of the mote and the TDB are
shared. Another advantage is that a Zener diode built into
the Telos achieves isolation between the USB components
and the non-USB components, and thus allows us to cap-
ture the current draw of only the non-USB components, even
when the mote is connected to a USB host. The diode has a
forward bias of about 360mV, meaning that as long as the
voltage drop across the sense resistor remains below 360mV,
all current drawn through Rload will be from the TDB. Rsense
is chosen sufficiently low such that this will happen even at
maximum power draw by the mote. The maximum current
of the mote is 30mA which would result in a voltage drop
across the sense resistor of 112mV.

To account for amplifier offset we use a switch between
Rsense and DVCC that allows 3.3V to be temporarily placed
at both ends of Rsense in a manner similar to [3]. The MCU
has an ADC buffer of 16 samples, that are filled by DMA to
reduce overhead. The x10 and x105 amplified signals are
sampled alternately at a rate of 40ksps, to achieve an ef-
fective sampling rate of 20ksps. When the ADC buffer is
full, an interrupt service routine sums up the samples in the
buffer. It is desirable to use the ADCx105 reading due to its
greater current resolution, unless there has been an overflow
in its reading. The ADCx10 value is used to determine if the
ADCx105 has had an overflow.

0 1 2 3 4 5 6 7BIT

TDO

TDI

TMS

TCK

Figure 4. Timing example for shift IR. The byte 0xCC is
shifted in on TDI while 0x00 is shifted out on TDO.

Using the MCU’s ADC reduces system cost and complex-
ity. However, it does have the disadvantage of introducing
a delay between an event occurring on the application pro-
cessor, and the the MCU recording the energy. The aver-
age delay is 234µs. 30µs is taken by the FPGA to read the
event from JTAG, while the rest is mostly due to the time
required for the MCU to sum the samples of the 16 entry
ADC buffer. An alternative design would have the FPGA
poll a separate ADC. This would reduce the delay to below
the 50µs (20KHz) sample period of the ADC.
2.2 JTAG Background

The application processor contains an on-chip debug
module. This module can be used to emulate the processor
(directly control the processor operations) and it can execute
breakpoints and watchpoints when certain conditions of the
data and address buses are met. A breakpoint halts execution
of the processor, while a watchpoint records the contents of
the data and address bus into an 8 entry circular buffer. The
OCDM is implemented as a state machine that is controlled
via the standard JTAG protocol.

JTAG uses four lines: data output to host (TDO), data in-
put to target (TDI), mode select (TMS), and clock (TCK).
JTAG shifts frames of data into and out of the OCDM and
that changes the state of the OCDM. There are two basic
shift modes: an 8-bit instruction register (IR) shift and an n-
bit data register (DR) shift. The TMS line selects between IR
or DR at the start of a shift based on the number of TCK ris-
ing edges for which it remains high. For example, in Figure
4, TMS remains high for two rising edges which selects the
IR mode, while one rising edge would select the DR mode.
The number of bits shifted in an n-bit DR shift is determined
by TMS being high a second time during the shift of the last
bit. Bits are shifted from the mote to the TDB on the TDO
line and from the TDB to the mote on the TDI line. Although
the JTAG protocol is standard, the sequence of instructions
that must be shifted into the OCDM on the MSP430 is pro-
prietary. We have reverse engineered these control sequences
and used them in AVEKSHA to determine what command se-
quences must be sent to the OCDM for the application to en-
ter a breakpoint, to set a watchpoint, or to enable PC polling.
2.3 Hardware Architecture

As shown in Figure 5, the TDB consists of a USB hub,
a USB to UART adapter, an MCU, and an FPGA. The USB
components are primarily for use in a lab environment and
provide reprogramming, control, and streaming of log data.
The USB hub has 1 upstream port and 3 downstream ports.
The upstream port is used to access the debug board from a
PC. One of the downstream ports is permanently connected
to a USB to UART adapter that provides reprogramming and
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data transfer to and from the MCU. The second downstream
port is available for connection to the USB port on the mote.
This is useful in a lab or testbed deployment where access to
the mote’s USB port is desired. The final downstream port
is available for future use, and we envision it being used in
testbed deployments to daisy chain several TDBs together.

The Actel IGLOO nano FPGA interfaces with the mote’s
JTAG and expansion interfaces. The expansion interface
of the mote provides access to the some of the its UART,
I2C, ADC, and GPIO peripherals. It was necessary to use
an FPGA to control the mote’s JTAG to be able to poll at
a sufficient frequency to keep up with the events we want
to observe. For some operations (such as PC polling) we
have found the need to drive the clock line of the JTAG up
to 24MHz. A software implementation would require a pro-
cessor that operates at several times that speed. Additionally,
there is the problem of processing the collected JTAG data to
determine what should be logged. The FPGA allows pipelin-
ing of JTAG control and data processing, so that the polling
loop never waits for data processing.

The MCU performs tasks that are less time critical and
better suited to software. For example, initialization of the
mote for debugging, reading the contents of the mote’s pro-
gram memory, and disassembly of the mote’s program code
are performed by the MCU. Using an MCU also makes
adding functionality to the debug board easier because the
MCU can be reprogrammed over USB. To simplify program-
ming, the MCU used on the TDB is an MSP430 processor
that is identical to the one used on the Telos mote. It oper-
ates at 8MHz.

In the current prototype, the TDB logs are streamed over
USB. It would also be possible to add some Flash mem-
ory to act as a circular buffer as was done in FlashBox [9].
Our maximum reliable streaming throughput over USB is
1Mbps. This is limited by the USB 1.0 hub and adapter,
which have a theoretical throughput of 1.5Mbps. Moving
to USB 2.0 would boost the USB throughput to 480Mbps,
which would make the MCU the bottleneck in streaming
logs. However, we have found 1Mbps to be sufficient in all
of our experiments as long as buffers are added in the MCU
and FPGA to absorb short bursts of data to be logged.

2.4 Firmware Architecture
The firmware of the TDB consists of C code for the MCU

and Verilog code for the FPGA.
Firmware on the MCU: The MCU is responsible for ini-
tialization tasks. When the TDB is first connected to the
mote, the MCU sets the FPGA into a mode where the MCU
can directly control the JTAG lines connected to the mote.
Through JTAG commands, the mote is put into a halt state
and the program memory of the mote is read. A simple dis-
assembly of the program is performed, where the start of
every function block is discovered by examining the destina-
tion of every call instruction in the code. This approach will
not reveal functions that are called only by function pointer,
however such functions are not common, and if they must
be debugged then the symbol table generated from a com-
piler can be loaded. The resulting table of function blocks
is then programmed into the FPGA’s RAM for use by the
function lookup module – a module that takes an address as
input, and outputs the function block containing that address.
Once the table is loaded, any watchpoint trigger can be set
on the mote. What triggers will be set will depend on the
goal of the tracing. We explain in Section 3 the complete list
of triggers that can be supported. Finally, the MCU sets the
FPGA to either the PC polling or the watchpoint mode and
resumes execution on the mote. Thus, the MCU on the TDB
functions as an orchestrator, but leaves the core functionality
for the FPGA.

The main advantage of reading and disassembling the
mote’s program memory when the TDB is connected to the
mote is that the TDB need not be aware a priori of what ap-
plication the mote is running. This process is independent of
the compiler or operating system used by the mote. In ad-
dition to finding the entry point of every function, the disas-
sembly of the code is also used to record the start and return
of every interrupt service routine, the address of every func-
tion call and return, and the addresses of special nop instruc-
tions (e.g. MOV R4, R4), that are used as trigger markers in
the code.
Firmware on the FPGA: The FPGA is responsible for con-
trolling the mote’s OCDM through JTAG. The FPGA polls
the OCDM to to detect the occurrence of any events of inter-
est. Following each iteration of the polling loop, processing
may need to be performed to decide whether or not the polled
data should be logged. For example, with PC polling, a log
entry should be generated when the polled PC value falls into
the address range of a new function. To prevent a slowdown
in polling, processing is pipelined. Figure 6 shows the PC
polling pipeline. At the end of each PC poll, the PC ad-
dress is passed to the function lookup module. The function
lookup module contains a table in RAM of the start address
of every function block. A binary search is performed on
the table to find the start address of the function block that
corresponds to the polled PC address. The function table ca-
pacity is 1024 function pointers, so the lookup completes in
at most log2(1024) = 10 reads from RAM. Lookup is not
a bottleneck, because the FPGA is internally clocked at 48
MHz, which allows 76 clock cycles per PC poll. After the
correct function pointer is discovered, it is passed to a filter-
ing module. This module decides to log the function pointer



Event Condition # Triggers

Function call MDB-F==0x12B0 1
Function return MDB-F==0x4130 1
Interrupt MAB-R≥0xFFE0 1
Interrupt return MDB-F==0x1300 1
Peripheral read 0x0010≤MAB-R≤0x01FF 2
User defined MDB-F==0x4404 1

Table 1. Types of triggers available for monitoring events.

only if it is different from the last logged function pointer.
Finally, function pointers that are to be logged are passed
to a FIFO output buffer maintained in the FPGA. The MCU
on the TDB reads this buffer and logs the data either in lo-
cal Flash memory, or if required, streams the log entries to a
host machine over USB. The buffer is necessary because the
MCU performs other functions, such as energy monitoring,
and may not be able to read a value to be logged in the time
it takes to perform a single PC poll. The buffer also absorbs
peaks in the rate of new functions being invoked. We have
observed a buffer size of 256 to be sufficient to absorb all
peaks in the programs that we have monitored.
3 Using AVEKSHA for Tracing and Profiling

There are three modes that AVEKSHA can operate in while
monitoring application execution, namely Breakpoint mode,
Watchpoint mode, and PC Polling mode. Depending on the
mode of operation, AVEKSHA interacts with the OCDM on
the application processor in different ways. Therefore, these
modes have different tradeoffs in terms of the level of intru-
siveness to the application (breakpoints are the most intru-
sive), the flexibility offered in terms of the kinds of events
that can be observed (watchpoints are the most flexible), and
the speed of event logging (PC polling is the fastest). Before
we describe the three modes of operation, we discuss the
kinds of triggers that AVEKSHA can set for observing events
of interest on the application processor.
3.1 Types of Triggers Available

The OCDM on the application processor allows us to set 8
concurrent triggers for detecting events of interest. Although
this number may, upon first glance, seem insufficient to cre-
ate a complete profile of an application, that is not the case
because the MSP430 offers far more advanced triggers than
just the program counter (PC) reaching a particular value.
For example, a trigger can compare the Memory Data Bus
(MDB) or the Memory Address Bus (MAB) to a set value
or range of values. Additionally, the trigger can be restricted
to be active only during an instruction fetch (F), a memory
read instruction (R), or a memory write instruction (W). This
gives us great flexibility in using these 8 concurrent triggers
to capture all our events of interest.

All of the triggers that we use in this paper are listed in
Table 1. The notation used for specifying the condition that
the value on the Memory Data Bus equals 0x12B0 on an in-
struction fetch is given by: MDB-F==0x12B0. This particular
trigger will fire for every function call because 0x12B0 is the
machine code for a function call instruction. Similarly, the
machine code for the return instruction from a function call
is ret=0x4130. Therefore, the trigger MDB-F==0x4130 will

trigger on all function call return events. A call to an inter-
rupt can be detected with the trigger MAB-R≥0xFFE0. The
interrupt vector table is located between address 0xFFE0 and
the end of the address space at 0xFFFF. Every time an inter-
rupt is to be serviced, the processor reads the interrupt vector
table to determine the address of the interrupt service routine
that corresponds to the interrupt being serviced. Interrupts
have their own return instruction (reti=0x1300) that can be
monitored with the trigger MDB-F==0x1300.

The compound trigger 0x0010≤MAB-R≤0x01FF will fire
for every read to memory between addresses 0x0010 and
0x01FF. A compound trigger, such as the above, that con-
tains two conditions is made by joining two triggers together,
and uses 2 of the 8 available trigger entries. In the MSP430,
the peripherals are all memory mapped to addresses between
0x0010 and 0x01FF. The peripherals include any sensors
that may be attached to the application processor. For pur-
poses of deterministic record and replay, it is important to
track what sensor values are read. This can be done by us-
ing the trigger 0x0010≤MAB-R≤0x01FF, which captures a
read from the memory-mapped peripheral portion of mem-
ory. When a trigger is fired, the OCDM stores the values of
the MAB and the MDB to the 8-entry circular buffer. The
stored MDB will contain the value that was read from the
peripheral.

While functions and interrupts are interesting points for
monitoring, we would like even more flexibility to monitor
any arbitrary event in the executing application. For exam-
ple, if we want to monitor the execution of every task in
TinyOS, we cannot do this with a function call trigger. This
is because the gcc compiler inlines many of the tasks in the
scheduler’s runTask() function. One solution is to set the
noinline directive on all task functions. We have verified
that this works, however, this is unsatisfactory because it sac-
rifices the efficiency gains obtained due to function call inlin-
ing. A less costly solution is to trigger on a nop instruction.
However, the MSP430 does not have an explicit nop instruc-
tion. Instead, compilers emulate this instruction by using a 1
cycle instruction that has no direct effect and no side effect
on status or mode bits – specifically, gcc uses the instruc-
tion MOV R3, R3 to emulate a nop. There are three possible
1 cycle instructions that meet the requirements for no effect
or side effect: (MOV Rn, Rn), (BIC #0, Rn), and (BIS #0,
Rn). With 16 registers available on the MSP430, this gives
us 48 possible choices for an emulated nop. We can use dif-
ferent application-specific meanings for each emulated nop
instruction to monitor 48 arbitrary events of interest. For our
purposes we choose just one, (MOV R4, R4), which trans-
lates to the machine code 0x4404, and add an instruction
fetch trigger MDB-F==0x4404. A programmer can now place
the assembly code (MOV R4, R4) at arbitrary places in the
code to monitor user-defined events of interest, such as the
beginning of a task.
3.2 Breakpoint Mode

Any of the 8 concurrent triggers available can be set as
a breakpoint. When a breakpoint is reached, the application
processor halts execution. AVEKSHA performs a continuous
poll of the CPU state of the application processor. When
it sees that the CPU is halted, it retrieves the state of the



application processor (e.g., the value of the PC) and sends
the JTAG command to resume execution.

Table 2 shows the speed at which a single poll (or test) of
the CPU state can be performed, the time it takes to read the
PC register, and the time it takes to resume CPU execution.
All of these operations involve shifting values into the in-
struction register (IR) and data register (DR) of the OCDM.
For example, a test of the CPU state requires shifting one
IR and one DR, reading the PC register requires shifting 2
IRs and 4 DRs, and resuming the CPU involves shifting 3
IRs and 1 DR. The operations needed for achieving the tasks
are not documented and we determined them through reverse
engineering TI’s IAR debug interface [10]. An IR can be
shifted in 15 cycles of the JTAG clock (TCK) and a DR can
be shifted in 23 JTAG clock cycles. Table 2 shows the times
for performing the required shift operations in software with
the MCU on the TDB running at 8MHz, and the FPGA im-
plementation. The FPGA is able to operate the JTAG clock
(TCK) at 10MHz, which is the fastest we have been able to
operate the JTAG reliably for the breakpoint and the watch-
point modes and is the maximum rated speed according to
the JTAG specification.

Breakpoints have the advantage that we never miss a trig-
ger firing, because every time a trigger is reached the CPU
is halted and control is passed to the TDB. The disadvantage
of the breakpoint mode is that we lose the property of non-
intrusiveness. In TinyOS, the MSP430 on the Telos is set
by default to operate at 4MHz meaning 1µs = 4cycles. Us-
ing the FPGA implementation, the time to poll and resume
the application processor is equivalent to 91.2 cycles of the
application processor. The application processor has to be
halted for at least this time while processing an event.
3.3 Watchpoint Mode

Any of the 8 triggers can be set as watchpoints rather
than breakpoints. The JTAG interface has an 8-entry circular
buffer where memory address bus (MAB) and memory data
bus (MDB) are stored when a watchpoint is hit. As indicated
earlier in Section 3.1, the trigger can be on an instruction
fetch, read, or write. Thus, by recording the address bus
content on an instruction fetch, it is possible to know the PC
value. The most recent entry written to the 8-entry buffer is
indicated with a set flag. AVEKSHA polls the flag of the most
recently written entry until it is cleared, indicating that a new
entry has been written to the buffer. It continues to read en-
tries until it again reaches an entry that has the last entry flag
set.

Watchpoints have the benefit that unlike breakpoints, they
are not intrusive to the application. The application does not
have to interrupt its execution when a watchpoint trigger is
met. However, this also means that there is a threshold for
the rate of triggers that AVEKSHA can keep up with. Be-
yond this rate, the circular buffer will wrap around and some
events of interest will be missed. Based on our empirical
measurements (given in Table 4.1), the entire processing for
one invocation of of a watchpoint trigger takes 30.5µs, which
corresponds to 122 cycles for the application processor at 4
MHz. Thus, as long as we do not have a sustained burst of
8 events of interest within 8×122 = 976 cycles, the TDB in
the watchpoint mode will not miss any event.
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Figure 7. TinyOS clock module setup (top) and modified
setup for PC polling (below).

3.4 PC Polling Mode
The final approach to trace generation, is to forego us-

ing triggers entirely, and instead poll the program counter of
the application processor. With this approach, each polled
PC value is used to determine what section of the code the
application processor is executing in. For example, the func-
tion lookup described in section 2.4 finds the function corre-
sponding to a PC value. The advantage of PC polling is that it
is about 19 times faster than the watchpoint mode and hence
can keep pace with a higher frequency of events, such as ev-
ery function transition. From Table 2, we see that it takes
just 1.6µs to complete a single PC poll, which corresponds
to 6.4 clock cycles of the application processor. This means
that it is possible to miss function transitions shorter than 7
clock cycles. However, with most instructions taking more
than one cycle, such a short time between function transi-
tions is unusual. A disadvantage of PC polling is that it does
not allow for advanced triggers – it only allows reading the
PC value. For example, we could not use PC polling alone
to watch for a memory read or write to a specific memory
location.

Implementing PC polling presents a practical challenge,
namely, synchronizing the TDB and the application mote.
This is because the TDB is reading the PC values while the
mote is executing. To achieve this synchronization, we re-
place the mote’s external crystal oscillator with a wire from
the FPGA. Then, we modify how TinyOS configures the pro-
cessor’s clock module, as shown in Figure 7, so that the
main clock (MCLK) on the processor is wired directly to the
FPGA’s clock. This achieves synchronization of the TDB
and the application processor.

In addition to reconfiguring the application processor’s
main clock (MCLK), we must also change the source of
TimerA which requires a 1MHz clock signal, and TimerB
which requires a 32kHz clock. The FPGA’s 4MHz signal
cannot be divided down to 32kHz, because LFXT1CLK and
ACLK each have a maximum clock divider of 8. Therefore,
we use the internal digitally controlled oscillator (DCOCLK)
to provide a 32kHz signal to TimerB and connect TimerA to
ACLK and remove the external crystal from the application
processor board. A consequence of this is that DCOCLK
cannot be turned off when the processor goes to sleep, be-
cause TimerB is responsible for waking the processor up.
Another solution would be to connect the FPGA clock to the
XT2 clock input pin. This would avoid removing the crystal
oscillator and would allow TimerB to use the oscillator as its



Mode Operation Software (µs) FPGA (µs)

Breakpoint Test 43 3.8
Read Addr. 140 12.2
Resume 77 6.8
Total 260 22.8

Watchpoint Test 200 18.3
Read Addr. 140 12.2
Total 340 30.5

PC Polling Read PC 48 1.6
Total 48 1.6

Table 2. Time taken, in software and using the FPGA, to
perform various operations through JTAG in the break-
point, watchpoint, and PC polling modes.

input, so the mote would not need DCOCLK in sleep mode.
We chose the first approach for practical reasons, because the
XT2 pin is physically less accessible than the crystal oscilla-
tor.

4 Experiments
4.1 Microbenchmarks

The objective of our microbenchmarking experiments is
to evaluate the performance of the building blocks of AVEK-
SHA. In particular, we evaluate (a) how many clock cycles it
takes for AVEKSHA to perform event monitoring for each of
the three modes – breakpoint, watchpoint, and PC polling,
(b) the accuracy of the energy monitoring by comparing it
with measurements obtained using a Fluke multimeter and
a dedicated power monitor from Monsoon Inc., and (c) the
energy consumption of the TDB itself.
Time Taken in Each Monitoring Mode: Ideally, we would
like to poll the PC or the watchpoint buffer at a rate sufficient
to observe every instruction executed on the application pro-
cessor. Unfortunately, the MSP430’s OCDM was designed
to be operated with a maximum frequency of 10MHz for the
JTAG clock. One exception we have discovered empirically
is that PC polling can be reliably clocked at up to 24MHz.
Table 2 presents the effect this has on the time taken to com-
plete basic polling operations. The software column shows
how long operations take if only the MCU on the TDB is be-
ing used while the FPGA column represents the time opera-
tions take in the current FPGA implementation. The FPGA
implementation is limited only by how fast the JTAG clock
of the application processor can be reliably driven. The ta-
ble presents results in µs. TinyOS operates the main clock at
4MHz by default, so 1µs=4 clock cycles.

The breakpoint mode of monitoring comprises a test op-
eration to determine if the application processor has halted
(which is done in a loop), a read address phase to collect the
instruction address at which the halt occurred, and a resume
phase to restart execution. Likewise, the watchpoint mode
has a test phase and a read address phase. The test phase
here is more complex because it has to test if a new entry has
been created in the JTAG circular buffer. In total, a watch-
point poll takes 30.5µs, or 122 cycles of the application pro-
cessor. For all of the applications that we have experimented
with (which are a superset of the ones for which we pro-

Resistance Current Relative Error
(Ohms) Computed (µA) TDB (µA) (Unitless)

179.71 18362.92 18483.56 0.007
218.55 15099.52 15193.74 0.006
560.8 5884.45 5807.06 0.013
991.4 3328.63 3314.46 0.004

4689.2 703.74 674.77 0.041
32610 101.20 92.34 0.088
55220 59.76 52.97 0.114

179360 18.40 16.09 0.125
266750 12.37 16.28 0.316

Table 3. Accuracy of the current measurements provided
by TDB for fixed resistive loads, compared to values com-
puted based on measurements with a Fluke multimeter.

vide results here), the rate of events, tasks, and application-
level functions is lower than the above rate. However, if we
include system-level entities (functions, events, and tasks),
then this rate is occasionally exceeded. Finally, PC polling
only requires a read PC operation that can be performed in
under 7 cycles of the application processor.
Accuracy of Power and Energy Monitoring: The objec-
tive of this experiment is to see if AVEKSHA can faithfully
monitor the power draw in the static case (using a fixed resis-
tive load) and when there are spikes in power consumption,
which happen commonly in embedded systems, e.g., when
the radio switches on. Table 3 shows the current consump-
tion reported by the TDB for various resistive loads. For
comparison, we measured the value of each resistor using a
high-accuracy Fluke multimeter and computed the theoret-
ical current consumption through it. As seen in the table,
TDB’s current measurement is within 10% of the computed
value for current draws of 100 µA or above, while the error
goes up for smaller current values. The accuracy of the cur-
rent measurement can be improved further using techniques
(which we have not implemented yet) such as better decou-
pling of analog and digital components, and use of a ground
plane.

We also measured the power consumption reported by
the TDB while attached to a Telos mote running the
TestNetworkLpl TinyOS application. It is important to note
that the amplitude of the power consumption trace in this
case will have a significant dynamic range due to various
components on the mote changing power states during ap-
plication execution. The TDB measurement of energy draw
over a 1 minute period is within 3.2% of that given by a Mon-
soon power meter [11]. Since the spikes in energy draw are
three orders of magnitude higher than the steady state case,
this close result can only be achieved because TDB monitors
the current spikes faithfully. For comparison, the static en-
ergy metering of iCount over a five decade range is accurate
to 20% down to about 1 µA [12].
Power Consumption of TDB: It is important that the TDB
itself consume a small amount of power, because the typical
usage scenario is the TDB coupled to the application pro-
cessor board when deployed in the field. A large source of
energy saving on the application processor comes from en-



tering a low-power sleep state when not in use. With a small
modification of the application processor’s code, to signal
when it is in sleep mode, it is also possible for the TDB to
enter a low-power sleep state.

A general purpose pin on the application processor is used
to signal to the TDB when to enter sleep mode. The sleep
signal is connected to the Flash Freeze pin on the FPGA.
Flash Freeze is a feature of Actel’s IGLOO nano FPGAs,
that allow them to enter a low power state while still hold-
ing output pins at their previous state. Because the JTAG
controlled OCDM is implemented as an externally clocked
state machine, as long as the JTAG I/O lines remain static
while in sleep mode, the OCDM will have the same state
upon wakeup. The FPGA is able to recover from sleep mode
within 1 µs.

We have implemented the necessary code to signal sleep
mode in TinyOS. Only system code is affected, the applica-
tion does not change. In total, we added only 10 lines of code
to TinyOS. First, we initialized the general purpose pin GIO0
for output mode in MotePlatformC. Then we modified the
macro TOSH SIGNAL, which is used to create interrupt han-
dlers, such that the beginning of every interrupt sets GIO0 to
indicate a transition to the awake state. Finally, we modified
McuSleepC to clear GIO0 just before transitioning to sleep.

The TDB consumes 55mW when active. The current im-
plementation does not have the ability to disable the USB
and energy monitoring components, which would be desir-
able when the TDB is in sleep. However, we have mea-
sured power consumption with these components removed
at 18mW. Of this, 11mW are due to the 48MHz oscillator.
This could be significantly reduced with a lower frequency
oscillator, multiplied to 48MHz by using the FPGA’s Phase-
Locked Loop (PLL) module.
4.2 Application Setup

Our experiments use both TinyOS and Contiki applica-
tions without needing any extra programming effort since
AVEKSHA is OS-agnostic by design. The only change to
the OSes is the one required due to the change of the clock
source that was required to synchronize the JTAG and appli-
cation processor’s clocks for PC polling (as shown in Figure
7). The clock initialization module is responsible for creat-
ing the main processor clock from the hardware clock and for
wiring other internal hardware clocks to different sources.
This module has to be changed in the OS for AVEKSHA to
work with our clock setup.

We use two TinyOS applications TestNetworkLpl and
TestFtsp and an object tracking application in Contiki.
TestNetworkLpl uses the collection tree protocol to push
sensor readings to a base station [13]. The wakeup period
is set to 128ms, which indicates how often the radio wakes
up to test the channel for transmitting nodes. This is a typ-
ical application for sensor networks. We present a bug that
was uncovered when we used the TDB to monitor all tasks
in the watchpoint mode. TestFtsp is a time synchronization
protocol [14]. Finally, LightTracker is a Contiki object track-
ing application takes light readings at each node and passes
values that reach a threshold to the base station through a
multi-hop routing protocol. The radio wakeup period is 125
ms [15].

Figure 8. Watchpoint trace of states when sending a mes-
sage in TestNetworkLpl, showing the application, low-
power-listening, and radio layers. The number above
each state’s timeline corresponds to the numbering of the
states under the timeline. For example, in the low-power
listen layer, state 1 is S OFF and 2 is S ON; at the beginning
the state is 1, then an extended period of state 2, followed
by a return to state 1.

4.3 Watchpoints
Using States to Monitor Energy: One application for the
TDB is to monitor various state variables. Monitoring state
variables and transitions is useful because they can be corre-
lated to power consumption, and can aid in understanding the
behavior of applications (as argued in Quanto as well [4]).
This is particularly true in TinyOS, where the event-driven
model encourages the use of explicit state machines.

In TestNetworkLpl, we have instrumented the applica-
tion layer, low-power-listening layer, and the radio layer to
monitor state changes. The instrumentation is simply to
place a nop instruction which can be used as a trigger in
the watchpoint mode. In the application layer, the begin-
ning of every task and event handler is instrumented. In the
low-power-listen layer, the state changes of interest are in
the RadioPowerState module. This uses the state compo-
nent interface in TinyOS, which we instrumented with nop
instructions. In the radio layer, state variables have the post-
fix m state. We wrote a script that finds all assignments to
these variables in the code and inserts a nop statement after
the assignment.

Figure 8 shows a packet send that is initiated from the
application layer when Timer.fired is triggered. The
first step is to turn on the radio by starting the voltage
regulator and oscillator, which is given by the state variable



Figure 9. Watchpoint trace of task executions during a
radio start event. The PowerCycleP startRadio task is
called over 3000 times due to a bug in the handling of the
CC2420CsmaP SplitControlState.

CC2420ControlP m state. The start up takes 1.6 ms,
the duration of the VREG STARTING, VREG STARTED, and
XOSC STARTING states. The CC2420TransmitP m state
shows the process of transmitting a message. The
message transmission takes place during the states
S BEGIN TRANSMIT and S EFD. After the message is
transmitted, the sender waits for an acknowledgment, which
is shown in the CC2420ReceiveP m state. This variable
shows the acknowledgment being received at 12 ms (the
S RX FCF state) after which it is read off from the radio
layer (the S RX PAYLOAD state). After this, the radio turns
off at 32ms. A parameter of LPL controls the delay after
receive and the default is set to 20ms which is verified by
our experiment. This kind of low-level tracing of events
in the stacks is useful for a developer wanting to get a
detailed understanding of how a high-level function is
accomplished (in this case, transmission of a message which
requires an acknowledgment). Such an understanding can
be used for performance tuning (speeding up some event
in the time line, or reducing the amount of time spent in a
particular state) or for energy optimization (knowing some
energy-expensive state, reduce the amount of time the node
spends in that state). This level of tracing would be very
difficult to obtain through purely software means because of
the fine-level of instrumentation that will be required, and
correspondingly the high level of perturbation that will be
caused to the normal execution of the application. On the
other hand, AVEKSHA does not have to make tightly coupled
changes to the hardware (the radio in this case), which are
difficult to make and in some cases impossible when the
hardware or the firmware is closed source.
Using Tasks to Debug an Application: The original objec-
tive of this experiment was to trace the collection tree pro-
tocol in the watchpoint mode. However, during the trac-
ing, we observed some suspicious behavior that caused us
to suspect that there was a bug in the low power listen-
ing layer of TinyOS. This was discovered by instrumenting
all of the tasks in TinyOS for the TestNetworkLPL appli-
cation. The nesC compiler in TinyOS creates a function

Figure 10. Watchpoint trace of task executions with the
startRadio bug fixed.
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Figure 11. Execution timeline that causes task spinning.

called SchedulerBasicP TaskBasic runTask that con-
tains a switch statement with a case for every task. By in-
serting a nop into each case, we can monitor every time any
task is executed. We originally found that AVEKSHA was
unable to keep pace with the rate of events that is generated
after the mote is started up. Later, it turned out that this was
due to a bug where some tasks were being repeatedly and
unnecessarily re-posted.

Figure 9 shows a trace of the tasks shortly after the mote
starts up. Three of the tasks (PowerCycleP startRadio,
DefaultLplP resend, and CC2420CsmaP sendDone
task) are stuck in a spin for 128ms. This implies that these

tasks keep re-posting themselves and do not get any useful
work done in each execution of the task. The spinning
tasks are the result of the order of events that happen when
the mote starts up. The timeline in Figure 11 shows the
relevant events. First the collection tree protocol routing
engine CptRoutingEngineP posts a task sendBeaconTask
to send a beacon. This task results in the LPL module
DefaultLplP posting a startRadio task. The radio is duly
started after 3.4ms and the radio layer CC2420CsmaP sends
a signal to DefaultLplP and PowerCycleP that the radio is
started. PowerCycleP receives the signal first and schedules
the PowerCycleP getCca task, after which DefaultLplP
receives the signal and schedules the DefaultLplP send
task. Tasks are executed in the order they are scheduled in
TinyOS. When PowerCycleP getCca executes it sched-
ules PowerCycleP startRadio, which is executed after
PowerCycle send. The task PowerCycleP startRadio



fails, because the radio is already started. This is precisely
where the bug lies. The radio has already been started and
therefore this task should not re-post itself, but should return
without doing anything. Eventually, when the sending of the
beacon message has completed, the radio is set off to sleep
and the PowerCycleP startRadio task succeeds. This can
be seen from the CC2420 state of S STARTED toward the end
of the timeline (when it is started a second time to perform
the CCA).

The buggy version of PowerCycleP startRadio is
shown first.
static inline void PowerCycleP__startRadio__runTask(void) {
if (PowerCycleP__SubControl__start() != SUCCESS) {
PowerCycleP__startRadio__postTask();

}
}

The undesirable effect of the bug is that fills a slot in the
task queue (though a redesign in TinyOS 2.x limits this ef-
fect) and a task is being re-posted and invoked uselessly thus
using up CPU resources.

The above is a real-case where the bug is acti-
vated. We hypothesize the following plausible appli-
cation case where the bug will be activated and the
PowerCycleP startRadio task will never succeed and
will keep spinning endlessly. Consider an application that
starts sending a message and shortly afterwards (after the ra-
dio has finished S STARTING and entered S STARTED state)
turns off low power listening. A low power listen interval
of 0 indicates that low power listening should be shut off
and the radio left on in receive mode. In this case, the task
PowerCycleP startRadio will never have the SUCCESS
condition and will continue to spin until the low power listen
interval is again changed. We have confirmed that this hap-
pens when the following synthetic application is executed.
event void RadioControl.startDone(error_t err) {
sendMessage();
// Schedule the timer to fire while
// PowerCycleP__startRadio is spinning
call Time.startOneShot(100);

}
event void Timer.fired() {
call LowPowerListening.setLocalWakeupInterval(0);

}
To fix this bug, consider what happens

to the state of the CC2420 radio (shown as
CC2420CsmaP SplitControlState in Figure 9). The
function PowerCycleP SubControl start() tries to
start the radio and tests the state of CC2420. If the state
is STARTING it returns SUCCESS, if the state is STARTED
it returns EALREADY, and if the state is anything else
it returns EBUSY. Therefore, the simple fix to the task
PowerCycleP startRadio is as follows.
static inline void PowerCycleP__startRadio__runTask(void) {
if (PowerCycleP__SubControl__start() != SUCCESS
&& PowerCycleP__SubControl__start() != EALREADY) {
PowerCycleP__startRadio__postTask();

}
}

Figure 10 shows that this fix indeed stops
PowerCycleP startRadio from spinning (except for
the short time the radio is in the transmitting state).
Processes in Contiki: An advantage of our approach over
software tracing is that it is independent of the OS being

Figure 12. Watchpoint trace of application level func-
tions and threads of a sender node in the Contiki tracking
application.
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Figure 13. Call graph of the local2Global function in
FTSP.

used. Without any modification to the Contiki OS, the TDB
is able to generate a trace of an application. In Figure 12,
we show a trace of a sender node of a simple object tracking
application called LightTracker [15], implemented in Con-
tiki [16] version 2.4. LightTracker tracks a moving light
source in a sensor network. There are two types of nodes
present in the network: a base station and a set of sender
nodes. A sender node periodically (every 2 seconds) collects
light intensity using its light sensor and forwards it to the
base station, possibly in a multi-hop manner, if the sensed
value is above a threshold. The base station periodically
checks the received samples and selects the node with the
maximum light intensity. The selected node is considered to
be the current position of the light source.

Unlike TinyOS, Contiki features the use of threads as
a key design component. This reduces the need of main-
taining explicit state machines in the code. In the sender
application, we place a nop at the starting point of ev-
ery thread command. PROCESS BEGIN represents the cre-
ation of a thread and is performed once at time 11 sec-
onds. PROCESS THREAD is executed every time the thread
is started. PROCESS WAIT EVENT UNTIL is a wait statement
in the thread that blocks until 2 seconds have passed on the
timer. The power spikes correspond well with the 125ms ra-
dio wakeup period.
4.4 PC Polling

Sampling the PC counter is a quick and non-intrusive op-
eration. It does not have the flexibility of setting watchpoint
triggers for specific conditions; however, it has the advantage
of being able to measure events with greater timing accuracy
than watchpoint polling. This is both because it is faster to
take a sample of the PC counter and because it does not have
to do buffer management.

A useful application of PC polling is for statistical profil-



Figure 14. Trace of the functions invoked in one execu-
tion of the local2Global function. Filled squares repre-
sent data collected from PC polling, and open rectangles
represent the inferred executions of each function.

ing of an application, say to determine what parts of the code
are most active. Raw PC polling data cannot directly give a
profile of the number of times a function is called or the total
time the function takes to execute, inclusive of the times of
the nested functions that it calls.

However, it is sometimes possible to combine knowledge
of the call graph with the raw PC polling data to discover how
many times a function is called and how long each instance
executes. As an example, we examine the call graph of
the local2Global time conversion function, in the TinyOS
implementation of the synchronization protocol FSTP. This
function requires a few calls to expensive 32-bit math func-
tions. The order of calls in this function is fixed, and is shown
in figure 13. In figure 14, the logged events generated from
PC polling are shown as filled squares. PC polling uses a
function lookup table, as described in Section 2. Every time
a new function is entered an event is logged. Because the PC
polling rate is equivalent to 6.4 application processor cycles,
we are likely to capture every transition between functions.
Combining the events with the call graph we can determine
when functions start and end as shown by the open rectan-
gles.

For this experiment, events are timestamped with a preci-
sion of 1 µs, which is less than the 1.6 µs a single PC poll
takes. From the start of the execution of local2Global, to
the call of floatsisf, the TDB recorded 5 µs (equivalent to
20 cycles of the application processor). A manual inspection
of the assembly code reveals that the correct cycle count is
19, which is within the expected margin of error.

4.5 Overhead of a Simple Software Profiler
Software profiling is used to collect and arrange differ-

ent statistics about function calls in a program, such as the
time spent in each function, how many times a function was
called, etc. A prominent example of a software profiler is
gprof [17], which is widely used in Unix systems. In this
experiment, we measure the overheads that a software pro-
filer can introduce in an embedded wireless node. We create
a simple software profiler following the principles outlined
in several papers [6, 1]. In it, profiling is performed by in-
strumenting with additional code, the entry and exit points of
the functions that we are interested in. The additional code
collects the time spent inside those functions.

For this experiment, we use the LightTracker object track-

static int read_light() {!
  uint16_t start_time = (uint16_t)clock_time();!
  SENSORS_ACTIVATE(light_sensor);!
  int val = light_sensor.value(LIGHT_SENSOR_PHOTOSYNTHETIC);!
  SENSORS_DEACTIVATE(light_sensor);!
  uint16_t end_time = (uint16_t)clock_time();!
  count_cycles[FID_READ_LIGHT] += end_time - start_time;!
  return val;!
}!

1!
2!
3  !
4!
5!
6!
7!
8!
9!

Figure 15. A function with additional code (marked in
red) for software profiling.

ing application introduced earlier and instrument the func-
tion, read light(), that is used by a sender node to collect
the light intensity. Figure 15 shows the modified function.
The newly added code for profiling is shown in red. Ba-
sically, the added code takes a time-stamp (lines 2 and 6)
at the entry and the exit points of the function and stores
their difference in a memory location (line 7). It should be
noted that the time estimation is correct for a non-recursive
function. For recursive functions, additional code is needed
to keep track of the depth of the call in the recursion stack,
which will incur additional overheads. Further, we only pro-
file function entry and exit points and not other events of in-
terest that AVEKSHA profiles, such as, point of an interrupt,
data read from a peripheral, etc. From this perspective, our
estimation of the overhead of the software-based profiler is
conservative and provides a baseline for any implementation
of a software-based profiler.

We simulate and profile LightTracker, both for the orig-
inal and the instrumented version of read light, using
the Cooja [18] simulator for 500 seconds. In both cases,
read light was called 249 times. The average run-time
for the regular version was 1,827 clock cycles per call. The
version with code instrumentation for profiling spent 1,896
clock cycles on average. So, the additional code intro-
duced an average overhead of 69 clock cycles per call. In
comparison, AVEKSHA adds no overhead to the application
processor, except in the case of nop triggered watchpoints,
which execute in a single cycle. In our simulation, a total
of 6,52,109 calls for 158 different functions were reported.
If we had instrumented each of those 158 functions, which
would be the case for a complete profiler, the overhead would
have increased execution time by 182%. The instrumenta-
tion of read light also increased the binary size by 201
bytes. For resource limited sensor nodes, the additional over-
heads, both in terms of run-time and binary size, are signifi-
cant.

AVEKSHA avoids the overheads accociated with a soft-
ware profiler because the application processor is relieved of
the burden of performing profiling-related tasks, which are
handled by the TDB instead.

5 Discussion
Table 4 shows the cost of the components if the board

was created in quantities of 1000. For the purpose of creat-
ing a flexible prototype, we used more powerful processors
than are required for the current implementation. The MCU
firmware uses 8.7kB program ROM and 5kB RAM, which
are 18% and 49% of the MSP430’s total capacity respec-
tively. The FPGA firmware uses 35% of the core logic and



Functionality Cost (USD)

MCU/FPGA 21.19
Energy Monitoring 7.30
USB Connectivity 6.99
Misc 9.15
Total 44.63

Table 4. Cost in quantities of 1000.

2.8kB or 62% of the RAM of the Actel FPGA.
The target mode of operation is the TDB coupled with

the application processor board in field deployments. In this
mode of operation, there is the consideration of where to
store the logged events. For debugging, it is sometime suf-
ficient to have a history of the last few events before some
condition in the application was reached. For example, the
OCDM of the MSP430 provides a history of the last 8 watch-
point events with this type of debugging in mind. If this is
the case, the TDB’s main processor can maintain a circular
buffer of events in RAM. If a larger history is required it
is possible to store events into the TDB MCU’s flash mem-
ory. For very long term storage an external USB storage host
could be attached to the TDB or a compressed trace can even
be sent to a computing platform over wireless communica-
tion.

An objective of AVEKSHA is to monitor the application
processor without interfering with its execution. While the
breakpoint mode is not suitable from this standpoint, it does
have potential application for security and reliability. For ex-
ample, breakpoints can be used to implement memory pro-
tection. The MSP430 has no memory protection and buffer
overflow code injection exploits are known [19]. The attack
works by injecting code into the stack and getting the pro-
cessor to execute this code. Except for special cases, such
as some boot loaders, the application processor should never
need to execute code from RAM. All code is in flash which
has a well-defined address range. By setting a breakpoint
for an instruction fetch outside of this range, we can prevent
such code injection exploits.

Our discussion of implementation details of AVEKSHA
has been specific to the MSP430 MCU. This is a shortcoming
of the current implementation, though the concepts apply to a
broad class of embedded processors. The requirement for an
OCDM within the processor, which can be accessed through
the JTAG interface is fundamental to our design. The specific
points of dependence on the MSP430 are the exact format of
the instructions used as event triggers, the address ranges of
the peripherals whose reads we are interested in, and under-
standing the state machine of the OCDM.
6 Related Work

There are primarily three areas of work related to AVEK-
SHA, namely power measurement, software and hardware
for debugging sensor networks, and hardware support for de-
bugging embedded systems.
Power measurement: The problem of estimating or mea-
suring power (or energy) consumption has been addressed
extensively in the context of various electronic systems. We
restrict our discussion of prior work to techniques that specif-

ically target sensor networks. Various sensor network simu-
lators, such as POWERTOSSIM, AVRORA, and COOJA pro-
vide energy estimation capability based on pre-built power
models of the target hardware platform. Measuring (as op-
posed to estimating) the power consumed by a sensor node is
usually done using the so-called sense resistor approach (see
Section 2). SPOT [3] is an energy meter for wireless sensor
nodes that is based on the sense-resistor approach and uses a
voltage to frequency converter to transform the voltage sam-
ples into an energy counter that can be read by the sensor
node. iCount [12] is an energy meter design that targets sen-
sor nodes that have a switching regulator. It provides energy
metering capabilities at almost zero cost by just counting the
cycles of the switching regulator. The Energy Endoscope
project [5] uses a separate application-specific integrated
circuit (called EMAP2), implemented using a micro-power
fuse-based FPGA, to perform charge accumulation based on
the sense-resistor method. Similar to designs such as SPOT,
AVEKSHA provides energy measurement capability with a
large dynamic range.

Quanto [4] builds on iCount by using regression mod-
els to obtain per-component energy consumption based on
the aggregate measurement provided by iCount and also per-
forms energy accounting to various application tasks through
causal activity tracking. Activities are tracked by calls to a
software-based logger. Currently, AVEKSHA does not have
the ability to assign energy consumption to individual activi-
ties, however, AVEKSHA could replace the Quanto software-
based logger by using watchpoints to indicate activities. This
would enable use of the Quanto algorithm to attribute energy
consumption.
Sensor network debugging: Replay debugging is a well
known technique for embedded systems [6] and has also
been proposed for sensor networks [1]. Envirolog presents a
software-only solution for recording events to flash memory
[7]. Applications are annotated to indicate what should be
recorded, which a preprocessor then turns into C code. Dur-
ing recording, 16 to 1024 bytes of RAM are used to buffer
events which are then stored to Flash. FlashBox adopts a
hybrid hardware/software approach to eliminate the bottle-
neck of writing to Flash [9]. In FlashBox, a second MCU
and flash memory are added to provide dedicated record-
ing. A recent software solution [2] has focused on a specific
kind of tracing (control flow tracing) and combines intelli-
gent static analysis with run-time trace compression to de-
crease overhead. Nevertheless, this technique still requires
applications to be instrumented to gather the tracing infor-
mation. In contrast, AVEKSHA not only requires no modifi-
cation to the application, but is also completely agnostic to
the OS used. The above techniques have the disadvantage
that they either perturb the timing behavior of the applica-
tion, possibly suppressing some subtle bugs, or cause a large
slowdown in application execution.

Emulators such as AVRORA and COOJA provide the abil-
ity to customize tracing and profiling of applications. In
Avrora an interface is provided for writing custom plugins to
monitor the emulation. YETI extends COOJA with a GDB
proxy [20]. This allows using the GDB debugging tool to
set breakpoints and watchpoints in the code being emulated.



Similar extensibility could be added to AVEKSHA by provid-
ing an API to customize three points: the watchpoint condi-
tions set by JTAG, the event filtering algorithm performed by
the FPGA, and how the MCU stores the data.
Hardware support for debugging embedded systems:
Real-time trace functionality has been implemented in many
processor architectures. For example, the CoreSight Trace
Macrocells provides hardware cores that can be added on
as peripherals to an ARM-based system-on-chip to produce
a cycle-accurate trace of execution. This includes the abil-
ity to collect and compress a large amount of trace data on
chip and to transfer this data to a trace port interface unit,
such as JTAG. The MSP430 MCU used in the Telos mote
has a limited built-in OCDM. It is typically used by tools
such as IAR [10] to record the last 8 instructions executed
before a watchpoint or breakpoint. AVEKSHA goes beyond
this by demonstrating that it is possible to provide Core-
Sight like functionality on a low end MCU commonly used
in wireless sensor nodes. Hardware designed to interface an
OCDM to a host computer via the JTAG standard is often
referred to as an In-Circuit Emulator (ICE) or In-Circuit De-
bugger (ICD), or more correctly, a JTAG adapter. Many ICE
tools are available for the MSP430 processor family. An ex-
ample, that inspired the authors to undertake this work, is
the open source GoodFET [21]. However, the GoodFET is
only capable of operations involving reading and writing to
flash. The debugging features of the OCDM (e.g., break-
points, watchpoints, state storage) are not documented by
Texas Instruments, and the protocol to activate these features
was reverse-engineered. There exist several point solutions
for hardware meant for tracking different kinds of control
flow for the purpose of debugging, e.g., in [22], the authors
design a hardware ASIC that monitors loops taken by tasks
in a multi-tasking environment and performs this in a non-
intrusive manner to the application.

7 Conclusion
In this paper, we have presented AVEKSHA, a hardware-

software solution to the problem of tracing events at runtime
in an embedded wireless node, without slowing down the ap-
plication. AVEKSHA can trace a variety of events, such as,
particular PC addresses, reads from peripherals, entry and
exits from tasks and interrupt service routines, and arbitrary
user-defined events. We have shown through two applica-
tions in TinyOS and one in Contiki that such tracing is use-
ful for profiling the execution times of different tasks and
event handlers. While the watchpoint mode of operation is
capable of capturing a practically limitless variety of events,
it cannot keep pace with events that occur more frequently
than 122 clock cycles on a sustained basis. The PC polling
mode of operation is restricted in the kinds of events that it
can detect, but being faster it can keep pace with events that
occur at a rate less than every 7 clock cycles. Our profiling of
tasks uncovered a performance bug in the low power listen
radio module of TinyOS, which we were able to fix. Further,
AVEKSHA has the ability to do energy monitoring over the
µA to mA range and coupling it to execution regions between
two events of interest.

This work points to the feasibility of tracing a wide vari-

ety of events of interest in a low-cost and non-intrusive man-
ner while the embedded node is deployed in the field. We do
not have to rely on expensive and custom-built hardware to
achieve this. The events provided by AVEKSHA can be used
by a variety of existing and yet-to-be-developed solutions,
such as replay-based debugging, performance profiling, and
energy monitoring.
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